Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical vortex dynamics in three-dimensional excitable media

Abstract

A dynamical system that can be provoked by a small stimulus to execute a large transient excursion before returning to the original state is called 'excitable'. In the Belousov–Zhabotinsky (BZ) reagent1 such excitation propagates as a travelling pulse of oxidative activity; leaving a point source, it resembles a closed spherical surface. Activity in excitable media can also be self-organized, independent of any recent stimulus. Wavefronts in cross-section then resemble a spiral emanating from a central pivot. In three dimensions the pivot points form a line, a vortex filament, that typically closes in a slowly shrinking 'scroll ring' (Fig. l)2–4. Here we report the results of monitoring this shrinkage quantitatively both in the BZ reagent and in the Oregonator model, leading to the confirmation of mathematical arguments that derive the filament's motion from its local curvature5–8. By additionally observing the predicted rapid unwinding of a coiled vortex filament9 we validate the reaction–diffusion theory of self-organized activity in such excitable media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zaikin, A. N. & Zhabotinsky, A. M. Nature 225, 535–537 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Winfree, A. T. Science 181, 937–939 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Winfree, A. T. Faraday Symp. chem. Soc. 9, 38–46 (1975).

    Article  CAS  Google Scholar 

  4. Welsh, B., Gomatam, J. & Burgess, A. Nature 304, 611–614 (1983).

    Article  ADS  Google Scholar 

  5. Panfilov, A. V., Rudenko, A. V. & Krinsky, V. I. Biofizika 31(5), 850–854 (1986).

    Google Scholar 

  6. Keener, J. P. Physica D 31 269–276 (1988).

    MathSciNet  Google Scholar 

  7. Ding, D.-F. Physica D (in the press).

  8. Keener, J. P. & Tyson, J. J. Science 239, 1284–1286 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Winfree, A. T. & Jahnke, W. J. phys. Chem. (in the press).

  10. Jahnke, W., Skaggs, W. E. & Winfree, A. T. J. phys. Chem. (in the press).

  11. Keener, J. P. & Tyson, J. J. Physica D 21, 307–324 (1986).

    MathSciNet  Google Scholar 

  12. Nandapurkar, P. J. in Modelling of Wave Processes in Excitable Media (ed. Zykov, V. S.) English translation (Manchester Univ. Press, 1988).

    Google Scholar 

  13. Lugosi, E. & Winfree, A. T. J. comput. Chem. 9(6), 689–701 (1988).

    Article  Google Scholar 

  14. Henze, C., Jahnke, W., Courtemanche, M. & Winfree, A. T. in Science at the John von Neumann Supercomputer Center Vol. 2 (Consortium for Scientific Computing, Princeton, in the press).

  15. Skaggs, W. E., Lugosi, E. & Winfree, A. T. IEEE Trans. Circ. Sys. T-CAS 35(7), 784–787 (1988).

  16. Winfree, A. T. & Strogatz, S. H. Physica D 9, 65–80 (1983).

    MathSciNet  Google Scholar 

  17. Winfree, A. T. & Strogatz, S. H. Physica D 9, 333–345 (1983).

    MathSciNet  Google Scholar 

  18. Winfree, A. T. & Guilford, W. in Biomathematics and Related Computational problems (ed. Ricciardi, L. M.) 697–716 (Kluwer Academic Publishers, 1988).

    Book  Google Scholar 

  19. Winfree, A. T. in Modelling of Wave Processes in Excitable Media (ed. Zykov, V. S.) English translation (Manchester Univ. Press, 1988).

    Google Scholar 

  20. Winfree, A. T. When Time Breaks Down 181–183 (Princeton Univ. Press, 1987).

    Google Scholar 

  21. Winfree, A. T. in Science at the John von Neumann Supercomputer Center Vol. 1, 125–130 (Consortium for Scientific Computing, Princeton, 1988).

    Google Scholar 

  22. Chen, P.-S. et al. Circ. Res. 62, 1191–1209 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Shibata, N. et al. Am. J. Physiol. 255, H891–H909 (1988).

    CAS  PubMed  Google Scholar 

  24. Winfree, A. T. J. theor. Biol (in the press).

  25. Winfree, A. T. in Cardiac Electrophysiology from Celt to Bedside (eds Zipes, D. P. & Jalife, J.) (W. B. Saunders Co., in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahnke, W., Henze, C. & Winfree, A. Chemical vortex dynamics in three-dimensional excitable media. Nature 336, 662–665 (1988). https://doi.org/10.1038/336662a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336662a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing