Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mutation that prevents GTP-dependent activation of the α chain of Gs

Abstract

Membrane-bound G proteins carry information from receptors on the outside of cells to effector proteins inside cells. The α subunits of these heterotrimeric proteins bind and hydrolyse GTP and control the specificity of interactions with receptor and effector elements1,2. Signalling by G proteins involves a cycle in which the inactive αβγ-GDP complex dissociates to produce α*-GTP, which is capable of activating the effector enzyme or ion channel; the α*-GTP complex hydrolyses bound GTP and reassociates with βγ to form the inactive complex. We have characterized a mutation that interrupts this GTP-driven cycle in αs, the α-chain of Gs, the G protein that stimulates adenylyl cyclase. The mutation converts a glycine to an alanine residue in the presumed GDP-binding domain of αs. The location and biochemical consequences of this mutation suggest a common mechanism by which binding of GTP or ATP may induce changes in the conformation of a number of nucleoside triphosphate binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilman, A. G. A. Rev. Biochem. 56, 615–649 (1987).

    Article  CAS  Google Scholar 

  2. Stryer, L. & Bourne, H. R. A. Rev. Cell Biol. 2, 391–419 (1986).

    Article  CAS  Google Scholar 

  3. Salomon, M. R. & Bourne, H. R. Molec. Pharmac. 19, 109–116 (1981).

    CAS  Google Scholar 

  4. Bourne, H. R., Kaslow, D., Kaslow, H. R., Salomon, M. R. & Licko, V. Molec. Pharmac. 20, 435–441 (1981).

    CAS  Google Scholar 

  5. Bourne, H. R., Beiderman, B., Steinberg, F. & Brothers, V. M. Molec. Pharmac. 22, 204–210 (1982).

    CAS  Google Scholar 

  6. Sullivan, K. A. et al. Nature 330, 758–760 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Rall, T. & Harris, B. A. FBBS Lett. 224, 365–371 (1987).

    Article  CAS  Google Scholar 

  8. Jones, D. T. & Reed, R. R. J. biol. Chem. 262, 14241–14249 (1987).

    CAS  PubMed  Google Scholar 

  9. Kirschmeier, P. T., Housey, G. M., Johnson, M. D., Perkins, A. S. & Weinstein, I. B. DNA 7, 219–225 (1988).

    Article  CAS  Google Scholar 

  10. Seamon, K. & Daly, J. W. J. biol. Chem. 257, 9799–9801 (1981).

    Google Scholar 

  11. Higashijima, T. et al. J. biol. Chem. 262, 752–756 (1987).

    CAS  PubMed  Google Scholar 

  12. Higashijima, T., Ferguson, K. M., Smigel, M. D. & Gilman, A. G. J. biol. Chem. 262, 757–761 (1987).

    CAS  PubMed  Google Scholar 

  13. Fung, B. K.-K. & Nash, C. R. J. biol. Chem. 258, 10503–10510 (1983).

    CAS  PubMed  Google Scholar 

  14. Bigay, J., Deterre, P., Pfister, C. & Chabre, M. EMBO J. 6, 2907–2913 (1987).

    Article  CAS  Google Scholar 

  15. Hurley, J. B., Simon, M. I., Teplow, D. B., Robishaw, J. D. & Gilman, A. G. Science 226, 860–862 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Howlett, A. C. & Gilman, A. G. J. biol. Chem. 255, 2861–2866 (1980).

    CAS  PubMed  Google Scholar 

  17. Masters, S. B., Stroud, R. M. & Bourne, H. R. Protein Engineering 1, 47–54 (1986).

    Article  CAS  Google Scholar 

  18. Jurnak, F. Science 230, 32–36 (1985).

    Article  ADS  CAS  Google Scholar 

  19. La Cour, T. F. M., Nyborg, J., Thirup, S. & Clark, B. F. EMBO J. 4, 2385–2388 (1985).

    Article  CAS  Google Scholar 

  20. De Vos, A. M. et al. Science 239, 888–893 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Fry, D. C., Ruby, S. A. & Mildvan, A. S. Proc. natn. Acad. Sci. U.S.A. 83, 907–911 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Dietzel, C. & Kurjan, J. Cell 50, 1001–1010 (1987).

    Article  CAS  Google Scholar 

  23. Miyajima, I. et al. Cell 50, 1011–1019 (1987).

    Article  CAS  Google Scholar 

  24. McCormick, F. et al. Science 230, 78–82 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Masters, S. B. et al. Science 241, 448–451 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Der, C. J., Finkel, T. & Cooper, G. M. Cell 44, 167–176 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, R., Masters, S., Sullivan, K. et al. A mutation that prevents GTP-dependent activation of the α chain of Gs. Nature 334, 712–715 (1988). https://doi.org/10.1038/334712a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334712a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing