Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Membrane currents that govern smooth muscle contraction in a ctenophore

Abstract

Ctenophores are transparent marine organisms that swim by means of beating cilia; they are the simplest animals with individual muscle fibres. Predatory species, such as Beroe ovata, have particularly well-developed muscles and are capable of an elaborate feeding response1. When Beroe contacts its prey, the mouth opens, the body shortens, the pharynx expands, the prey is engulfed and the lips then close tightly. How this sequence, which lasts 1 s, is accomplished is unclear. The muscles concerned are structurally uniform2,3 and are innervated at each end by a neuronal nerve net4 with no centre for coordination. Isolated muscle cells studied under voltage-clamp provide a solution to this puzzle. We find that different groups of muscle cells have different time-dependent membrane currents. Because muscle contraction depends upon calcium entry during each action potential, these different currents produce different patterns of contraction. We conclude that in a simple animal such as a ctenophore, a sophisticated set of mem-brane conductances can compensate for the absence of an elaborate system of effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tamm, S. L. in Eiectrical conduction and behaviour in ‘simple’ invertebrates (ed. Shelton, G. A. B.) 266–358 (Clarendon, Oxford, 1982).

    Google Scholar 

  2. Hemandez-Nicaise, M.-L., Mackie, G. O. & Meech, R. W. J. gen. Physiol. 75, 79–105 (1980).

    Article  Google Scholar 

  3. Hemandez-Nicaise, M.-L. & Amsellem, J. J. Ultrastruct. Res. 72, 151–168 (1980).

    Article  Google Scholar 

  4. Hemandez-Nicaise, M.-L. J. Neurocytol. 2, 249–263 (1973).

    Article  Google Scholar 

  5. Hernandez-Nicaise, M.-L., Bilbaut, A., Malaval, L. & Nicaise, G. Proc. natn. Acad. Sci. U.S.A. 79, 1884–1888 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Meves, H. & Pichon, Y. J. Physiol., Lond. 268, 511–532 (1977).

    Article  CAS  Google Scholar 

  7. Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    Article  CAS  Google Scholar 

  8. Walsh, J. V. & Singer, J. J. Pflug. Arch. 390, 207–210 (1981).

    Article  CAS  Google Scholar 

  9. Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 211–239 (1975).

    Article  CAS  Google Scholar 

  10. Hagiwara, S., Kusano, K. & Saito, N. J. Physiol., Lond. 155, 470–489 (1961).

    Article  CAS  Google Scholar 

  11. Solc, C. K., Zagotta, W. N. & Aldrich, R. W. Science 236, 1094–1098 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Kostyuk, P. G., Velelovsky, N. S., Fedulova, S. A. & Tsyndrenko, A. Y. Neuroscience 6, 2439–2444 (1981).

    Article  CAS  Google Scholar 

  13. Cooper, E. & Shrier, A. J. Physiol., Lond. 369, 199–208 (1985).

    Article  CAS  Google Scholar 

  14. Benham, C. D., Bolton, T. B., Lang, R. J. & Takewaki, T. J. Physiol., Lond. 371, 45–67 (1986).

    Article  CAS  Google Scholar 

  15. Mackie, G. O. & Meech, R. W. Nature 313, 791–793 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Hodgkin, A. L. & Nakajima, S. J. Physiol., Lond. 221, 105–120 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilbaut, A., Nicaise, ML., Leech, C. et al. Membrane currents that govern smooth muscle contraction in a ctenophore. Nature 331, 533–535 (1988). https://doi.org/10.1038/331533a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331533a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing