Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An exonuclease protection assay reveals heat-shock element and TATA box DNA-binding proteins in crude nuclear extracts

Abstract

The ability to identify and purify trans-acting cellular factors that regulate eukaryotic genes is limited by the lack of a practical general assay. Current procedures using crude whole cell or nuclear extracts that restore transcriptional function in vitro or permit reconstruction of native chromatin at control sequences are effective only in select systems. I now present an exonuclease protection assay that is generally applicable for detecting sequence-specific DNA-binding proteins. The assay extends earlier work on the binding to the Drosophila heat-shock gene control element of a protein factor (HAP) present in crude nuclear extracts; the binding was shown by reconstitution of specific exonuclease resistance within a nuclease-hypersensitive site in chromatin1,2. We show here that this same exonuclease resistance can be reconstituted on free linear DNA, despite many nonspecific binding activities present in unfractionated nuclear extracts. We have further applied this assay method to fractionate the protein factor that is bound constitutively to the heat-shock gene TATA box region in native chromatin1. Exonuclease protection offers a sensitive, precise and rapid assay for any sequence-specific DNA-binding protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wu, C. Nature 309, 229–234 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Wu, C. Nature 311, 81–84 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Richardson, C. C. & Kornberg, A. J. biol. Chem. 239, 242–250 (1964).

    CAS  PubMed  Google Scholar 

  4. Richardson, C. C., Lehman, I. R. & Kornberg, A. J. biol. Chem. 239, 251–258 (1964).

    CAS  PubMed  Google Scholar 

  5. Rogers, S. G. & Weiss, B. Meth. Enzym. 65, 201–210 (1980).

    Article  CAS  Google Scholar 

  6. Guo, L. H. & Wu, R. Meth. Enzym. 100, 60–96 (1983).

    Article  CAS  Google Scholar 

  7. Henikoff, S. Gene 28, 351–359 (1984).

    Article  CAS  Google Scholar 

  8. Ptashne, M. et al. Science 194, 156–161 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Siebenlist, U., Simpson, R. B. & Gilbert, W. Cell 20, 269–281 (1980).

    Article  CAS  Google Scholar 

  10. Schreier, P. H., Davies, R. W. & Kotewicz, M. L. FEBS Lett. 109, 159–163 (1980).

    Article  CAS  Google Scholar 

  11. Shalloway, D. T., Kleinberger, T. & Livingston, D. M. Cell 20, 411–422 (1980).

    Article  CAS  Google Scholar 

  12. Chan, P. T. & Lebowitz, J. Nucleic Acids Res. 11, 1099–1116 (1983).

    Article  CAS  Google Scholar 

  13. Vocke, C. & Bastia, D. Cell 35, 495–502 (1983).

    Article  CAS  Google Scholar 

  14. Scheidereit, C., Geisse, S., Westphal, H. M. & Beato, M. Nature 304, 749–752 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Von der Ahe, D. et al. Nature 313, 706–709 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Prunell, A. & Kornberg, R. D. Cold Spring Harb. Symp. quant. Biol. 42, 103–108 (1977).

    Article  Google Scholar 

  17. Riley, D. & Weintraub, H. Cell 13, 281–293 (1978).

    Article  CAS  Google Scholar 

  18. Chao, M. V., Gralla, J. & Martinson, H. G. Biochemistry 18, 1068–1074 (1979).

    Article  CAS  Google Scholar 

  19. Igo-Kemenes, T., Omori, A. & Zachau, H. G. Nucleic Acids Res. 8, 5377–5390 (1980).

    Article  CAS  Google Scholar 

  20. Horz, W. & Zachau, H. G. J. molec. Biol. 144, 305–327 (1980).

    Article  CAS  Google Scholar 

  21. Prunell, A. & Kornberg, R. D. J. molec. Biol. 154, 515–523 (1982).

    Article  CAS  Google Scholar 

  22. Strauss, F. & Prunell, A. Nucleic Acids Res. 10, 2275–2293 (1982).

    Article  CAS  Google Scholar 

  23. Zhang, X.-Y., Fittler, F. & Horz, W. Nucleic Acids Res. 11, 4287–4306 (1983).

    Article  CAS  Google Scholar 

  24. Pelham, H. R. B. Cell 30, 517–528 (1982).

    Article  CAS  Google Scholar 

  25. Breathnach, R. & Chambon, P. A Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  26. Davidson, B. L., Egly, J. M., Mulvihill, E. R. & Chambon, P. Nature 310, 680–686 (1983).

    Article  ADS  Google Scholar 

  27. Costlow, N. A., Simon, J. A. & Lis, J. T. Nature 313, 147–149 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C. An exonuclease protection assay reveals heat-shock element and TATA box DNA-binding proteins in crude nuclear extracts. Nature 317, 84–87 (1985). https://doi.org/10.1038/317084a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317084a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing