Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Millisecond activation of transducin in the cyclic nucleotide cascade of vision

Abstract

Cyclic GMP has been implicated as a messenger molecule involved in visual transduction1. Photoexcited rhodopsin (R*) binds to a multisubunit membrane protein called transducin (T) and stimulates the exchange of a bound GDP molecule for GTP. This leads to the release of the α-subunit of T with bound GTP (Tα–GTP), which activates a cyclic GMP phosphodiesterase2–6. The question arises as to whether the hydrolysis of cyclic GMP that results from activation of the phosphodiesterase is sufficiently rapid to be involved in visual excitation, which occurs on a time scale of 2 s in the single-photon limit7. Previous studies have suggested that the cyclic GMP phosphodiesterase is activated in less than 100 ms at moderate light levels3,8,9. We report here light scattering studies of magnetically orientated frog rod outer segments which show that a molecule of R* catalyses the activation of a molecule of T in about 1 ms. Thus, hundreds of molecules can be activated within the response time of vision in the single-photon limit, and the formation of Tα–GTP is fast enough for it to be a key step in visual transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, W. H. & Nicol, G. D. Nature 280, 64–66 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Bitensky, M. W., Wheeler, G. L., Yamazaki, A., Rasenick, M. M. & Stein, P. J. Curr. Topics Membrane Transport 15, 237–271 (1981).

    Article  CAS  Google Scholar 

  3. Liebman, P. A. & Pugh, E. N. Curr. Topics Membrane Transport 15, 157–170 (1981).

    Article  CAS  Google Scholar 

  4. Fung, B. K.-K., Hurley, J. B. & Stryer, L. Proc. natn. Acad. Sci. U.S.A. 78, 152–156 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Stryer, L. Cold Spring Harb. Symp. quant. Biol. 48, 841–852 (1984).

    Article  Google Scholar 

  6. Hurley, J. B. & Stryer, L. J. biol. Chem. 257, 11094–11099 (1982).

    CAS  PubMed  Google Scholar 

  7. Baylor, D. A., Lamb, T. D. & Yau, K.-W. J. Physiol., Lond. 288, 589–611 (1979).

    CAS  Google Scholar 

  8. Kühn, H., Bennett, N., Michel-Villaz, M. & Chabre, M. Proc. natn. Acad. Sci. U.S.A. 78, 6874–6877 (1981).

    Article  ADS  Google Scholar 

  9. Bennett, N. Eur. J. Biochem. 123, 133–139 (1982).

    Article  CAS  Google Scholar 

  10. Bignetti, E., Cavaggioni, A., Fasella, P., Ottonello, S. & Rossi, G. L. Molec. cell. Biochem. 30, 93–99 (1980).

    Article  CAS  Google Scholar 

  11. Harary, H. H., Brown, J. E. & Pinto, L. H. Science 202, 1083–1085 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Hofmann, K. P. & Emeis, E. Biophys. Struct. Mech. 8, 23–34 (1981).

    Article  CAS  Google Scholar 

  13. Hofmann, K. P., Schleicher, A., Emeis, D. & Reichert, J. Biophys. Struct. Mech. 8, 67–93 (1981).

    Article  CAS  Google Scholar 

  14. Hofmann, K. P., Uhl, R., Hofmann, W. & Kreutz, W. Biophys. Struct. Mech. 2, 61–77 (1976).

    Article  CAS  Google Scholar 

  15. Reichert, J. & Hofmann, K. P. Biophys. Struct. Mech. 8, 95–105 (1981).

    Article  CAS  Google Scholar 

  16. Uhl, R., Hofmann, K. P. & Kreutz, W. Biochim. biophys. Acta 469, 113–122 (1977).

    Article  CAS  Google Scholar 

  17. Chabre, M. Proc. natn. Acad. Sci. U.S.A. 75, 5471–5474 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Worcester, D. L. Proc. natn. Acad. Sci. U.S.A. 75, 5475–5477 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Saibil, H., Chabre, M. & Worcester, D. Nature 262, 266–270 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Yeager, M., Schoenborn, B., Engelman, D., Moore, P. & Stryer, L. J. molec. Biol. 137, 315–348 (1980).

    Article  CAS  Google Scholar 

  21. Kühn, H. Nature 283, 587–589 (1980).

    Article  ADS  Google Scholar 

  22. Bennett, N., Michel-Villaz, M. & Kühn, H. Eur. J. Biochem. 127, 97–103 (1982).

    Article  CAS  Google Scholar 

  23. Emeis, D., Kühn, H., Reichert, J. & Hofmann, K. P. FEBS Lett. 143, 29–34 (1982).

    Article  CAS  Google Scholar 

  24. Vuong, T. M. thesis, Stanford Univ. (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuong, T., Chabre, M. & Stryer, L. Millisecond activation of transducin in the cyclic nucleotide cascade of vision. Nature 311, 659–661 (1984). https://doi.org/10.1038/311659a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311659a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing