Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Contribution of human VκII germ-line genes to light-chain diversity

Abstract

The genetic basis of the antibody repertoire—estimated to exceed 106 different immunoglobulin molecules—is a major unanswered problem1,2. The number of germ-line Vκ genes in the mouse genome is probably several hundred3,4 while the corresponding number for three out of four human Vκ subgroups ( VκI, VκIII and VκIV) is probably altogether only 15–20 (ref. 5). The κII proteins differ significantly in sequence from the other κ-chain proteins6. To determine the contribution of VκII genes to κ-chain diversity, we searched for a human lymphoid cell line which produces a κ II chain and report here for the first time the sequence of a VκII gene. According to blot hybridizations with this Vκ gene as a probe, subgroup II contributes about half as many genes to the Vκ gene repertoire as are detected by a VκI probe. Therefore the repertoire is rather small which implies that somatic mutations7–9 or other mechanisms must play an important role in the generation of light-chain diversity in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tonegawa, S. Nature 302, 575–581 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Honjo, T. A. Rev. Immun. 1, 499–528 (1983).

    Article  CAS  Google Scholar 

  3. Valbuena, O., Marcu, K. B., Weigert, M. & Perry, R. P. Nature 276, 780–784 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Cory, S., Tyler, B. M. & Adams, J. M. J. molec. appl. Genet. 1, 103–116 (1981).

    CAS  Google Scholar 

  5. Bentley, D. L. & Rabbitts, T. H. Cell 24, 613–623 (1981).

    Article  CAS  Google Scholar 

  6. Kabat, E. A., Wu, T. T., Bilofsky, H., Reid-Miller, M. & Perry, H. Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, 1983).

    Google Scholar 

  7. Pech, M., Höchtl, J., Schnell, H. & Zachau, H. G. Nature 291, 668–670 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Gearhart, P. J. & Bogenhagen, D. F. Proc. natn. Acad. Sci. U.S.A. 80, 3439–3443 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Baltimore, D. Cell 26, 295–296 (1981).

    Article  CAS  Google Scholar 

  10. Milstein, C. Nature 216, 330–332 (1967).

    Article  ADS  CAS  Google Scholar 

  11. Hood, L. & Talmage, D. W. Science 168, 325–334 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Wang, A.-C., Fudenberg, H. H., Wells, J. V. & Roelcke, D. Nature new Biol. 243, 126–127 (1973).

    Article  CAS  Google Scholar 

  13. Solomon, A. J. clin. Invest. 61, 97–108 (1978).

    Article  CAS  Google Scholar 

  14. Dolby, T. W., Devuono, J. & Croce, C. M. Proc. natn. Acad. Sci. U.S.A. 77, 6027–6031 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Putnam, F. W., Whitley, E. J. Jr, Paul, C. & Davidson, J. N. Biochemistry 12, 3763–3780 (1973).

    Article  CAS  Google Scholar 

  16. Bentley, D. L. & Rabbitts, T. H. Nature 288, 730–733 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Kafatos, F. C., Jones, C. W. & Efstratiadis, A. Nucleic Acids Res. 7, 1541–1552 (1979).

    Article  CAS  Google Scholar 

  18. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  19. Bentley, D. L. & Rabbitts, T. H. Cell 32, 181–189 (1983).

    Article  CAS  Google Scholar 

  20. Rimm, D. L., Horness, D., Kucera, J. & Blattner, F. R. Gene 12, 301–309 (1980).

    Article  CAS  Google Scholar 

  21. Hieter, P. A., Maizel, J. V. Jr & Leder, P. J. biol. Chem. 257, 1516–1522 (1982).

    CAS  PubMed  Google Scholar 

  22. Neumaier, P. S. & Zachau, H. G. Nucleic Acids Res. 11, 3631–3636 (1983).

    Article  CAS  Google Scholar 

  23. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  24. Sanger, F., Coulson, A., Barrell, B., Smith, A. & Roe, B. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  Google Scholar 

  25. Garoff, H. & Ansorge, W. Analyt. Biochem. 115, 450–457 (1981).

    Article  CAS  Google Scholar 

  26. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  27. Loening, U. E. Biochem. J. 102, 251–257 (1967).

    Article  CAS  Google Scholar 

  28. Bentley, D. L. Nature 307, 77–80 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klobeck, HG., Solomon, A. & Zachau, H. Contribution of human VκII germ-line genes to light-chain diversity. Nature 309, 73–76 (1984). https://doi.org/10.1038/309073a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309073a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing