Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphorylation-dependent contraction of actomyosin gels from amphibian eggs

Abstract

Actin networks or gels are a major structural component of the cytoplasm in most eukaryotic cells, especially those exhibiting motility1,2. Cell-free extracts from a variety of cell types, including sea urchin eggs3 and Xenopus oocytes4, have been successfully used to examine the regulation of actin gelation and contraction. Although it has been shown that actin gel contraction is myosin-dependent (for review, see ref. 1), nothing is known of the role of myosin phosphorylation in this process. Indeed, much of the evidence suggesting that actomyosin-dependent movement in nonmuscle cells is regulated by myosin phosphorylation is provided by experiments showing that phosphorylation affects actin-activated ATPase activity5,6. Here we report that the rate of actin gel contraction is increased, and several additional gels form and contract, in extracts from Xenopus laevis eggs prepared in conditions that promote protein phosphorylation. Since, in these conditions the 18,000-molecular weight (MW) light chain of myosin is the major phosphorylated component of the contracted gels, these results demonstrate a direct relationship between myosin phosphorylation and actin gel contraction. Evidence is also presented demonstrating that the recurrent waves of gelation and contraction occur in the absence of fluctuations in free-Ca2+ or pH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Taylor, D. L. & Condeelis, J. S. Int. Rev. Cytol. 56, 57–144 (1978).

    Article  Google Scholar 

  2. Stossel, T. P. Phil. Trans. Roy. Soc. B299, 275–289 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Kane, R. E. J. Cell Biol. 86, 803–809 (1980).

    Article  CAS  Google Scholar 

  4. Clark, T. G. & Merriam, R. W. J. Cell Biol. 77, 427–438 (1978).

    Article  CAS  Google Scholar 

  5. Adelstein, R. S. & Eisenberg, E. A. Rev. Biochem. 49, 921–956 (1980).

    Article  CAS  Google Scholar 

  6. Kendrick-Jones, J. & Scholey, J. M. J. Muscle Res. Cell Mot. 2, 347–372 (1981).

    Article  CAS  Google Scholar 

  7. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  8. Meeusen, R. L. & Cande, W. Z. J. Cell Biol. 82, 57–65 (1979).

    Article  CAS  Google Scholar 

  9. Cassidy, P., Hoar, P. E. & Kerrick, W. G. L. J. biol. Chem. 254, 11148–11153 (1979).

    CAS  Google Scholar 

  10. Tsien, R. Y. & Rink, T. J. Biochim. biophys. Acta 599, 623–638 (1980).

    Article  CAS  Google Scholar 

  11. Gorman, A. L. F. & Thomas, M. V. J. Physiol., Lond. 275, 357–376 (1978).

    Article  CAS  Google Scholar 

  12. Steinhardt, R., Zucker, R. & Schatten, G. Devl Biol. 58, 185–196 (1977).

    Article  CAS  Google Scholar 

  13. Condeelis, J. S. & Taylor, D. L. J. Cell Biol. 74, 901–927 (1977).

    Article  CAS  Google Scholar 

  14. Hinke, J. A. M. in Glass Electrodes for pH and other Cations, (ed. Eisenman, G.) 467–477 (Dekker, New York, 1967).

    Google Scholar 

  15. Adelstein, R. S. & Klee, C. B. J. biol. Chem. 256, 7501–7509 (1981).

    CAS  PubMed  Google Scholar 

  16. Cande, W. Z., Tooth, P. J. & Kendrick-Jones, J. J. Cell. Biol. 97, 1062–1071 (1983).

    Article  CAS  Google Scholar 

  17. Adelstein, R. S., Pato, M. D., Sellers, J. R., de Lanerolle, P. & Conti, M. A. Cold Spring Harb. Symp. quant. Biol. 46, 921–928 (1981).

    Article  CAS  Google Scholar 

  18. Walsh, M. P., Bridenbaugh, R., Hartshorne, D. J. & Kerrick, W. G. L. J. biol. Chem. 257, 5987–5990 (1982).

    CAS  PubMed  Google Scholar 

  19. Wallach, D., Davis, P., Bechtel, P., Willingham, M. & Pastan, I. Adv. Cyclic Nucleotides Res. 9, 371–379 (1978).

    CAS  Google Scholar 

  20. Imhof, B. A. et al. Proc. natn. Acad. Sci. U.S.A. 77, 3264–3268 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Hara, K., Tydeman, R. & Kirschner, M. Proc. natn. Acad. Sci. U.S.A. 77, 462–466 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Meeusen, R. L., Bennet, J. & Cande, W. Z. J. Cell Biol. 86, 858–865 (1980).

    Article  CAS  Google Scholar 

  23. Jeffery, W. R. & Meier, S. Devl Biol. 96, 125–143 (1983).

    Article  CAS  Google Scholar 

  24. Trotter, J. A. & Adelstein, R. S. J. biol. Chem. 254, 8781–8785 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezzell, R., Brothers, A. & Cande, W. Phosphorylation-dependent contraction of actomyosin gels from amphibian eggs. Nature 306, 620–622 (1983). https://doi.org/10.1038/306620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing