Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kinetics of sickle haemoglobin polymerization in single red cells

Abstract

Kinetic studies on solutions of purified haemoglobin S indicate that the rate of intracellular polymerization is an important variable in the pathophysiology of sickle cell disease1–4. Until now, however, no experimental technique has been available to measure directly the kinetics of intracellular polymerization. Indirect methods, which use visual determination of cellular shape changes or changes in filterability of red cell suspensions, have given apparently conflicting results5–9. Here we report our initial results on the application of a laser-photolysis, light scattering technique to measure directly the kinetics of haemoglobin S polymerization in single red cells. In our experiment, deoxyhaemoglobin S is rapidly formed by photolysing the carbon monoxide complex with an argon ion laser focused inside the cell, and the change in scattered light is used to detect the appearance of polymer. We find a very wide distribution of delay times, ranging from 1 ms to >100s, indicating that the polymerization inside red cells proceeds by the same nucleation and growth mechanism as in solutions of purified haemoglobin S10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hofrichter, J., Ross, P. D. & Eaton, W. A. Proc. natn. Acad. Sci. U.S.A. 71, 4864–4868 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Eaton, W. A., Hofrichter, J. & Ross, P. D. Blood 47, 621–627 (1976).

    CAS  PubMed  Google Scholar 

  3. Sunshine, H. R., Hofrichter, J. & Eaton, W. A. Nature 275, 238–240 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Sunshine, H. R., Ferrone, F. A., Hofrichter, J. & Eaton, W. A. INSERM Symp. 9, 31–46 (1979).

    Google Scholar 

  5. Rampling, M. W. & Sirs, J. A. Clin. Sci. molec. Med. 45, 655–664 (1973).

    CAS  Google Scholar 

  6. Messer, M. J. & Harris, J. W. J. Lab. clin. Med. 76, 537–547 (1970).

    CAS  PubMed  Google Scholar 

  7. Zarkowsky, H. S. & Hochmuth, R. M. J. clin. Invest. 56, 1023–1034 (1975).

    Article  CAS  Google Scholar 

  8. Antonini, E. et al. FEBS Lett. 86 209–212 (1978).

    Article  CAS  Google Scholar 

  9. Harrington, J. P. & Nagel, R. L. J. Lab. clin. Med. 90, 863–872 (1977).

    CAS  PubMed  Google Scholar 

  10. Ferrone, F. A., Hofrichter, J., Sunshine, H. R. & Eaton, W. A. Biophys. J. 32, 361–377 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Dvorak, J. A. & Stotler, W. F. Expl Cell. Res. 68, 144–148 (1971).

    Article  CAS  Google Scholar 

  12. Parpart, A. K. & Hoffman, J. F. J. cell. comp. Physiol. 47, 295–303 (1956).

    Article  CAS  Google Scholar 

  13. Padilla, F., Bromberg, P. A. & Jensen, W. N. Blood 41, 653–660 (1973).

    CAS  PubMed  Google Scholar 

  14. Burton, A. L., Anderson, W. L. & Andrews, R. V. Blood 32, 819–822 (1968).

    CAS  PubMed  Google Scholar 

  15. Seakins, M., Gibbs, W. N., Milner, P. F. & Bertles, J. F. J. clin. Invest. 52, 422–432 (1968).

    Article  Google Scholar 

  16. Hofrichter, J., Ross, P. D. & Eaton, W. A. Proc. natn. Acad. Sci. U.S.A. 73, 3035–3039 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Goldberg, M. A., Husson, M. A. & Bunn, H. F. J. biol. Chem. 252, 3414–3421 (1977).

    CAS  PubMed  Google Scholar 

  18. Swerdlow, P. H. et al. Hemoglobin 1, 527–537 (1977).

    Article  CAS  Google Scholar 

  19. Bookchin, R. M., Ueda, Y., Nagel, R. L. & Landau, L. C. in Biochemical and Clinical Aspects of Hemoglobin Abnormalities (ed. Caughey, W. S.) 57–64 (Academic, New York, 1978).

    Book  Google Scholar 

  20. Serjeant, G. R. The clinical Features of Sickle Cell Disease (North-Holland, Amsterdam, 1974).

    Google Scholar 

  21. Wrightstone, R. N. & Huisman, T. H. J. Am. J. clin. Path. 61, 375–381 (1974).

    Article  CAS  Google Scholar 

  22. Powars, D. R., Schroeder, W. A., Weiss, J. N., Chan, L. S. & Azen, S. P. J. clin. Invest. 65, 732–740 (1980).

    Article  CAS  Google Scholar 

  23. Fabry, M. E. & Nagel, R. L. Blood Cells 8, 9–15 (1982).

    CAS  PubMed  Google Scholar 

  24. Dover, G. J., Boyer, S. H., Charache, S. & Heintzelman, K. New Engl. J. Med. 299, 1428–1434 (1978).

    Article  CAS  Google Scholar 

  25. Sunshine, H. R., Hofrichter, J. & Eaton, W. A. J. molec. Biol. 133, 435–467 (1979).

    Article  CAS  Google Scholar 

  26. Goldberg, M. A., Lalos, A. T. & Bunn, H. F. J. biol. Chem. 256, 193–197 (1981).

    CAS  PubMed  Google Scholar 

  27. Bookchin, R. M., Balazs, T. & Landau, L. C. J. Lab. clin. Med. 87, 597–616 (1976).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coletta, M., Hofrichter, J., Ferrone, F. et al. Kinetics of sickle haemoglobin polymerization in single red cells. Nature 300, 194–197 (1982). https://doi.org/10.1038/300194a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300194a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing