Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Why are fetal muscles slow?

Abstract

Differentiating fast and slow mammalian muscles contract slowly at birth and increase their speed during the first few weeks of life1,2. However, only small proportions of slow myosin light chains are found in early developing muscles and the fast type of light chains predominate3–7. In addition, differentiating muscle contains unique, embryonic forms of myosin which may partially determine the early slow responses8–15. The present study suggests additional reasons for these slow twitch times. Most skeletal muscles are initially formed from a small population of primary generation cells16,17 which are innervated by pioneering axons early in myogenesis18. Subsequently, numerous secondary generation cells develop along the walls of primary myotubes, then separate and become independent units of contraction. Using affinity-purified antibodies to fast and slow myosin5, it was found that most primary myotubes react with anti-slow myosin and are destined to become slow, Type I fibres. By contrast, secondary generation cells stain exclusively with anti-fast myosin and develop into Type II, fast fibres. We propose that primary myotubes constitute the fundamental motor units of the developing neuromuscular system and are responsible for early slow movements. Secondary generation cells become organized into large, fast motor units later in development, eclipsing the original slow response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Buller, A. J., Eccles, J. & Eccles, R. J. Physiol., Lond. 150, 399–416 (1960).

    Article  CAS  Google Scholar 

  2. Close, R. J. Physiol., Lond. 173, 74–95 (1964).

    Article  CAS  Google Scholar 

  3. Sréter, F., Holtzer, S., Gergely, J. & Holtzer, H. J. Cell Biol. 55, 586–594 (1972).

    Article  Google Scholar 

  4. Pelloni-Mueller, G., Ermini, M. & Jenny, E. FEES Lett. 67, 68–74 (1976).

    Article  CAS  Google Scholar 

  5. Rubinstein, N., Pepe, F. & Holtzer, H. Proc. natn. Acad. Sci. U.S.A. 74, 4524–4527 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Rubinstein, N. & Kelly, A. Devl Biol. 62, 473–485 (1978).

    Article  CAS  Google Scholar 

  7. Syrovy, J. & Gutmann, E. Pflügers Arch. ges. Physiol. 369, 85–89 (1977).

    Article  CAS  Google Scholar 

  8. Trayer, I. P., Harris, C. I. & Perry, S. V. Nature 217, 452–453 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Huszar, G. Nature new Biol. 240, 260–264 (1972).

    Article  CAS  Google Scholar 

  10. Sréter, F., Balint, M. & Gergely, J. Devl Biol. 46, 317–325 (1975).

    Article  Google Scholar 

  11. Whalen, R., Butler-Browne, G. & Gros, F. J. molec. Biol. 126, 415–431 (1978).

    Article  CAS  Google Scholar 

  12. Whalen, R., Butler-Browne, G., Sell, S. & Gros, F. Biochemie 61, 625–632 (1979).

    Article  CAS  Google Scholar 

  13. Whalen, R., Schwartz, K., Bouveret, P., Sell, S. & Gros, F. Proc. natn. Acad. Sci. U.S.A. 76, 5197–5201 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Hoh, J. & Yeoh, A. P. S. Nature 280, 321–323 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Rushbrook, J. & Stracher, A. Proc. natn. Acad. Sci. U.S.A. 76, 4331–4334 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Kelly, A. & Zacks, S. J. Cell Biol. 42, 135–153 (1969).

    Article  CAS  Google Scholar 

  17. Church, J. J. Anat. 105, 419–438 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bennett, M. & Pettigrew, A. J. Physiol., Lond. 241, 515–545 (1974).

    Article  CAS  Google Scholar 

  19. Rowlerson, A. J. Physiol., Lond. 301, 19 (1980).

    Google Scholar 

  20. Rubinstein, N. & Kelly, A. J. Cell Biol. (in the press).

  21. Carlson, B. & Gutmann, E. Expl Neurol. 58, 82–93 (1976).

    Article  Google Scholar 

  22. Ashmore, C., Robinson, D., Rattray, P. & Doerr, L. Expl Neurol. 37, 241–255 (1972).

    Article  CAS  Google Scholar 

  23. Kelly, A. & Schotland, D. in Muscle Development and the Muscle Spindle (ed. Banker) (Excerpta Medica, Amsterdam, 1972).

    Google Scholar 

  24. Salmons, S. & Sréter, F. Nature 263, 30–34 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Salmons, S. & Vrbova, G. J. Physiol., Lond. 210, 535–549 (1969).

    Article  Google Scholar 

  26. East, E. Anat. Rec. 50, 201–212 (1931).

    Article  Google Scholar 

  27. Strauss, S. & Weddell, G. J. Neurophysiol. 3, 358–369 (1940).

    Article  Google Scholar 

  28. Windle, W., Minear, W., Austin, M. & Orr, D. Physiol. Zool 8, 156–185 (1935).

    Article  Google Scholar 

  29. Kelly, A. & Zacks, S. J. Cell Biol. 42, 154–169 (1969).

    Article  CAS  Google Scholar 

  30. Kikuchi, T. & Ashmore, C. Cell Tissue Res. 171, 233–251 (1977).

    Google Scholar 

  31. Ontell, M. Anat. Rec. 189, 669–690 (1977).

    Article  CAS  Google Scholar 

  32. Setz, W., Caldwell, J. & Ribchester, R. J. Physiol., Lond. 297, 463–478 (1979).

    Article  Google Scholar 

  33. Gauthier, G., Lowey, S. & Hobbs, A. Nature 274, 125–129 (1978).

    Article  Google Scholar 

  34. Kugelberg, E. J. J. Neurol. Sci. 27, 269–289 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, A., Rubinstein, N. Why are fetal muscles slow?. Nature 288, 266–269 (1980). https://doi.org/10.1038/288266a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288266a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing