Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments

Abstract

Methods of aerobic degradation of aromatic compounds in the biosphere are well understood, but it is only relatively recently that it has been shown how some bacteria can also degrade these substrates in the absence of molecular oxygen. This occurs by photometabolism (Athiorhodaceae), nitrate respiration (Pseudomonas and Moraxella sp.) and methanogenic fermentation (a consortium) in which the benzene nucleus is first reduced and then cleaved by hydrolysis to yield aliphatic acids for cell growth. These methods may be used by microbial communities to catabolise man-made pollutants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jenkinson, D. S. Biochem. J. 109, 2P (1968).

    Article  CAS  Google Scholar 

  2. Zobell, C. in Proc. Rudolfs' Research Conf: Principles and Applications in Aquatic Microbiology (eds Heukelekian, A. & Dondero, N. C.) 337–339 (Wiley, New York London and Sydney 1964).

    Google Scholar 

  3. McLaren, A. D. Science 141, 1141–1147 (1963).

    Article  ADS  CAS  Google Scholar 

  4. Evans, W. C. & Happold, F. C. J. Soc. Chem. Industr. 58, 55 (1939).

    Article  Google Scholar 

  5. Evans, W. C. Biochem. J. 41, 373–382 (1947).

    Article  CAS  Google Scholar 

  6. Kilby, B. A. Biochem. J. 43, v (1948).

    CAS  PubMed  Google Scholar 

  7. Hayaishi, O. & Hashimoto, K. J. Biochem. Tokyo, 37, 371–374 (1950).

    Article  CAS  Google Scholar 

  8. Evans, W. C., Smith, B. S. W., Linstead, R. P. & Elvidge, J. A. Nature 168, 772–775 (1951).

    Article  ADS  CAS  Google Scholar 

  9. Dagley, S. & Stopher, D. A. Biochem. J. 73, 16P–17P (1959).

    Article  Google Scholar 

  10. Ribbons, D. W. & Evans, W. C. Biochem. J. 76, 310–316 (1960).

    Article  CAS  Google Scholar 

  11. Trippett, S., Dagley, S. & Stopher, D. A. Biochem. J. 76, 9P (1960).

    Google Scholar 

  12. Dagley, S., Evans, W. C. & Ribbons, D. W. Nature 188, 560–566 (1960).

    Article  ADS  CAS  Google Scholar 

  13. Hayaishi, O. Plenary Sessions Sixth Internat. Congr. Biochemistry, New York City I.U.B. 33, 31 (1964).

    Google Scholar 

  14. Dagley, S. Essays Biochem. 11, 81–138 (1975).

    CAS  PubMed  Google Scholar 

  15. Williams, P. A. Biochem. Soc. Trans. 4, 452–473 (1976).

    Article  Google Scholar 

  16. Kieslich, K. Microbial Transformations of Non-Steroid Cyclic Compounds 1–1262 (Wiley, New York & London, 1976).

    Google Scholar 

  17. Dutton, P. L. & Evans, W. C. Biochem. J. 109, 5P (1968).

    Article  CAS  Google Scholar 

  18. Tarvin, D. & Buswell, A. M. J. Am. chem. Soc. 56, 1751–1755 (1934).

    Article  CAS  Google Scholar 

  19. Proctor, M. H. & Scher, S. Biochem. J. 76, 33P (1960).

    CAS  Google Scholar 

  20. van Niel, C. B. Adv. Enzymol. 1, 263–328 (1941).

    CAS  Google Scholar 

  21. Leadbetter, E. R. & Hawk, A. J. appl. Bacteriol. 27, 448 (1965).

    Google Scholar 

  22. Dutton, P. L. & Evans, W. C. Biochem. J. 104, 30P (1967).

    Article  CAS  Google Scholar 

  23. Dutton, P. L. & Evans, W. C. Biochem. J. 113, 525–536 (1969).

    Article  CAS  Google Scholar 

  24. Guyer, M. & Hegeman, G. D. J. Bacteriol. 99, 906–907 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Whittle, P. J., Lunt, D. O. & Evans, W. C. Biochem. Soc. Trans. 4, 490–491 (1976).

    Article  CAS  Google Scholar 

  26. Oshima, T. Allg. Mikrobiol. 5, 386–394 (1965).

    Article  CAS  Google Scholar 

  27. Taylor, B. F., Campbell, W. L. & Chinoy, I. J. Bacteriol. 102, 430–7 (1970).

  28. Taylor, B. F. & Heeb, M. J. Arch. Mikrobiol. 83, 165–171 (1972).

    Article  CAS  Google Scholar 

  29. Stanier, R. Y. J. Bacteriol. 55, 477–494 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Williams, R. J. & Evans, W. C. Biochem. Soc. Trans. 1, 186–187 (1973).

    Article  CAS  Google Scholar 

  31. Williams, R. J. & Evans, W. C. Biochem. J. 148, 1–10 (1975).

    Article  CAS  Google Scholar 

  32. Bakker, G. FEMS Lett. 1, 103–108 (1977).

    Article  ADS  CAS  Google Scholar 

  33. Chmielowski, J., Grossman, A. & Wegrzynowska, I. Zeszyty Naukowe Politechniki Slaskiej. Inzynieria Sanitarna. 8, 97–122 (1964).

    Google Scholar 

  34. Clark, F. M. & Fina, L. R. Archs Biochem. Biophys. 36, 26–32 (1952).

    Article  CAS  Google Scholar 

  35. Fina, L. R. & Fiskin, A. M. Archs Biochem. Biophys. 91, 163–165 (1960).

    Article  CAS  Google Scholar 

  36. Roberts, F. F. thesis, Kansas State Univ. (1962).

  37. Nottingham, P. M. & Hungate, R. E. J. Bacteriol. 98, 1170–1172 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Keith, C. L. Dissertations Abstr. Intern. B. 33, 3214–3215 (1972).

    Google Scholar 

  39. Balba, M. T. & Evans, W. C. Biochem. Soc. Trans. 5, 302–304 (1977).

    Article  CAS  Google Scholar 

  40. Ferry, J. G. & Wolfe, R. S. Arch. Mikrobiol. 107, 33–40 (1976).

    Article  CAS  Google Scholar 

  41. Balba, M. T. & Evans, W. C. Biochem. Soc. Trans. 5, 300–302 (1977).

    Article  CAS  Google Scholar 

  42. McCarty, P. L. et al. Microbiol Energy Conversion (eds Schlegel, H. G. & Barnes, J.) 179–199 (UNITAR, Gottingen, 1977).

    Book  Google Scholar 

  43. Sundman, V. Acta Polytechnica Scand. 40, 1–116 (1965).

    Google Scholar 

  44. Trojanowski, J. Acta Microbiol. Polonica 2, 13–22 (1970).

    CAS  Google Scholar 

  45. Stewart, W. D. P. Algae, Man and the Environment (ed. Jackson, D. F.) 53–72 (Syracuse University Press, Syracuse, 1968).

    Google Scholar 

  46. Eimhjellen, K. Proc. 3rd Inter. Congr. Photobiol., S. Scher. Quoted in footnote, 583–585 (1960).

  47. Dutton, P. L. & Evans, W. C. Archs Biochem. Biophys. 136, 228–232 (1970).

    Article  CAS  Google Scholar 

  48. The Persistence of Insecticides and Herbicides Br. Council Crop Protection Man. No 17. (ed. Beynon, K. I.) (Boots, Nottingham, 1976).

  49. Raghu, K. & Macrae, I. C. Science 19, 263–264 (1966).

    Article  ADS  Google Scholar 

  50. Hill, D. W. & McCarty, P. L. J. Water Poll. Control 39, 1259–1277 (1967).

    CAS  Google Scholar 

  51. Ahmed, M. K., Casida, J. E. & Nichols, R. E. Agric. Food Chem. 6, 740–745 (1958).

    Article  CAS  Google Scholar 

  52. Senior, E., Bull, A. T. & Slater, J. H. Nature 263, 476–479 (1976).

    Article  ADS  CAS  Google Scholar 

  53. Horvath, R. S. Bacteriol. Rev. 36, 146–155 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cohn, M. et al. Nature 172, 1096 (1953).

    Article  ADS  CAS  Google Scholar 

  55. Williams, P. A. & Worsey, M. J. Biochem. Soc. Trans. 4, 466–468 (1976).

    Article  CAS  Google Scholar 

  56. Pemberton, J. M. & Fisher, P. R. Nature 268, 732 (1977).

    Article  ADS  CAS  Google Scholar 

  57. Clarke, P. H. in Evolution in the Microbial World (ed. Carlile, M. J. and Skehel, J. J.) (Cambridge University Press, London, 1974).

    Google Scholar 

  58. Hartley, B. S. in Evolution in the Microbial World (ed. Carlile, M. J. and Skehel, J. J.) (Cambridge University Press, London, 1974).

    Google Scholar 

  59. Bryant, M. P., Wolin, E. A., Wolin, M. J. & Wolfe, R. S. Arch Mikrobiol. 59, 20–31 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, W. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature 270, 17–22 (1977). https://doi.org/10.1038/270017a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/270017a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing