Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ternary microplasmin–staphylokinase– microplasmin complex is a proteinase–cofactor– substrate complex in action

Abstract

The serine proteinase plasmin is the key fibrinolytic enzyme that dissolves blood clots and also promotes cell migration and tissue remodeling. Here, we report the 2.65 Å crystal structure of a ternary complex of microplasmin–staphylokinase bound to a second microplasmin. The staphylokinase 'cofactor' does not affect the active-site geometry of the plasmin 'enzyme', but instead modifies its subsite specificity by providing additional docking sites for enhanced presentation of the plasminogen 'substrate' to the 'enzymes's' active site. The activation loop of the plasmin 'substrate', cleaved in these crystals, can be reconstructed to show how it runs across the active site of the plasmin 'enzyme' prior to activation cleavage. This is the first experimental structure of a productive proteinase–cofactor–macromolecular substrate complex. Furthermore, it provides a template for the design of improved plasminogen activators and plasmin inhibitors with considerable therapeutical potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo ribbon representation of the μPl–SAK–μPl ternary complex in the 'top view'.
Figure 2: Stereo ribbon diagram of the SAK–μPl plasminogen activating complex in the 'standard orientation'.
Figure 3: Structure-based amino acid sequence alignment.
Figure 4: Stereo section of the final 2.65 Å 2Fobs - Fcalc electron density map (blue) contoured at 1σ around the interface between μPl enzyme (green carbons) and SAK (yellow carbons).
Figure 5: Standard view from the μPl substrate towards the active site of the μPl enzyme in complex with SAK (shown as a solid surface).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bachman, F. In Haemostasis and thombosis (eds Bloom, A. L., Forbes, C. D., Thomas, D. P. & Tuddenham E. G. D.) 575–614 (Churchill Livingstone, London; 1994).

    Google Scholar 

  2. Chapman, H. A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr. Opin. Cell Biol. 9, 714–724 (1997).

    Article  CAS  Google Scholar 

  3. O' Reilly, M. S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2, 689–692( 1996).

    Article  CAS  Google Scholar 

  4. Chang, Y. et al. Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen. Biochemistry 37, 3258–3271 (1998).

    Article  CAS  Google Scholar 

  5. Madison, E. L. Probing structure function relationships of tissue-type plasminogen activator by site specific mutagenesis. Fibrinolysis 8, 221–236 (1994).

    Article  CAS  Google Scholar 

  6. Sottrup-Jensen, L., Claeys, H., Zajdel, M., Petersen, T. E. & Magnuson, S. In Progress in chemical fibrinolysis and thrombolysis. (eds Davidson J. F., Rowan, R. M., Samana, M. M. & Desnoyers) 191–209 (Raven Press, New York; 1978 ).

    Google Scholar 

  7. Collen, D. Staphylokinase: a potent, uniquely fibrin selective thrombolytic agent. Nature Med. 4, 279–284 ( 1998).

    Article  CAS  Google Scholar 

  8. Rabijns, A., De Bondt H. L. & De Ranter C. Three-dimensional structure of staphylokinase, a plasminogen activator with therapeutic potential. Nature Struct. Biol. 4, 357–360 (1997).

    Article  CAS  Google Scholar 

  9. Lijnen, H, R., De Cock, F., Van Hoef, B., Schlott, B. & Collen, D. Characterization of the interaction between plasminogen and staphylokinase. Eur. J. Biochem. 224, 143–149 (1994).

    Article  CAS  Google Scholar 

  10. Silence, K. et al. Structure-function relationships in staphylokinase as revealed by "clustered charge to alanine" mutagenesis. J. Biol. Chem. 270, 27192–27198 (1995).

    Article  CAS  Google Scholar 

  11. Schlott, B., Gührs, K. H., Hartmann, M., Röcker, A. & Collen, D. Staphylokinase requires NH2 -terminal proteolysis for plasminogen activaion. J. Biol. Chem. ID>272, 6067–6072 ( 1997).

  12. Jespers, L. et al. Arginine 719 in human plasminogen mediates formation of the staphylokinase:plasmin activator complex. Biochemistry 37, 6380–6386 (1998).

    Article  CAS  Google Scholar 

  13. Dawson, K. M., Marshall, J. M., Raper, R. H., Gilbert, R. J. & Ponting C. P. Substitution of arginine 719 for glutamic acid in human plasminogen substantially reduces its affinity for streptokinase. Biochemistry 33, 12042– 12047 (1994).

    Article  CAS  Google Scholar 

  14. Spraggon, G. et al. The crystal structure of the catalytic domain of human urokinase-type plasminogen activator. Structure 3, 681– 691 (1995).

    Article  CAS  Google Scholar 

  15. Lamba, D. et al. The 2.3 Å crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. J. Mol. Biol. 258, 117–135 (1996).

    Article  CAS  Google Scholar 

  16. Brandstetter, H., Bauer, M., Huber, R., Lollar, P. and Bode, W. X-ray structure of clotting factor IXa: Active site and module structure related to Xase activity and hemophilia B. J. Cell. Biol. 92 , 9796–9800 (1995).

    CAS  Google Scholar 

  17. Kalafatis, M., Swords, N. A., Rand, M. D. and Mann, K. G. Membrane-dependent reactions in blood coagulation: role of the vitamin K-dependent enzyme complexes. Biochem. Biophys. Acta 1227, 113–129 (1994).

    PubMed  Google Scholar 

  18. Banner, D. et al. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 380, 41–46 (1996).

    Article  CAS  Google Scholar 

  19. Renatus, M. et al. Lysine 156 promotes the anomalous proenzyme activity of tPA: X-ray structure of single-chain human tPA. EMBO J. 16, 4797–4805, 1997.

    Article  CAS  Google Scholar 

  20. Hopfner, K. P. et al. Converting blood coagulation factor IX into factor Xa: dramatic increase in amidolytic activity identifies important active site determinants . EMBO J. 16, 6626–6635 (1997).

    Article  CAS  Google Scholar 

  21. Schlott, B. et al. High yield production and purification of recombinant staphylokinase for thrombolytic therapy. Biotechnology 12, 185–189 (1993).

    Google Scholar 

  22. Leslie, A. G. W. Mosflm user guide, Mosflm version 5.20 (MRC laboratory of Molecular Biology, Cambridge, UK; 1994).

  23. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).

    Article  Google Scholar 

  24. Otwinowski, Z. & Minor, W. DENZO: a film processing for macromolecular crystallography. (Yale University; 1993).

  25. Roussel, A. & Cambileau, C. TurboFRODO in silicon graphics geometry (Silicon Graphics, Mountain View, California; 1989).

    Google Scholar 

  26. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).

  27. Brünger, A. X-PLOR version 3.1. A system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1993).

  28. Evans, S. V. SETOR: hardware lighted three-dimensional solid model representation of macromolecules . J. Mol. Graph. 11, 134– 138 (1990).

    Article  Google Scholar 

  29. Barton, G. J. ALSCRIPT: a tool to format multiple sequence alignments. Prot. Engng. 6, 37–40 ( 1993).

    Article  CAS  Google Scholar 

  30. Nicholls, A., Bharadwaj, R. & Honig, B. Grasp - graphical representation and analysis of surface properties. Biophys. J. 64, A166 (1993).

    Google Scholar 

Download references

Acknowledgements

We thank G. P. Bourenkov and H. Bartunik for technical assistance at DESY, E. Kopetzki for help with protein expression and refolding, P. Fuentes for laboratory assistance, and R. Engh and M. Stubbs for reading the manuscript. This work was supported by the EEC programs 'Human Capital and Mobility' and 'Biotechnology', and by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parry, M., Fernandez-Catalan, C., Bergner, A. et al. The ternary microplasmin–staphylokinase– microplasmin complex is a proteinase–cofactor– substrate complex in action. Nat Struct Mol Biol 5, 917–923 (1998). https://doi.org/10.1038/2359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing