Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction

Abstract

We describe an electrophysiological preparation of the neuromuscular junction of the nematode C. elegans, which adds to its considerable genetic and genomic resources. Mutant analysis, pharmacology and patch-clamp recording showed that the body wall muscles of wild-type animals expressed a GABA receptor and two acetylcholine receptors. The muscle GABA response was abolished in animals lacking the GABA receptor gene unc-49. One acetylcholine receptor was activated by the nematocide levamisole. This response was eliminated in mutants lacking either the unc-38 or unc-29 genes, which encode alpha and non-alpha acetylcholine receptor subunits, respectively. The second, previously undescribed, acetylcholine receptor was activated by nicotine, desensitized rapidly and was selectively blocked by dihydro-β-erythroidine, thus explaining the residual motility of unc-38 and unc-29 mutants. By recording spontaneous endogenous currents and selectively eliminating each of these receptors, we demonstrated that all three receptor types function at neuromuscular synapses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C. elegans neuromuscular preparation.
Figure 2: Voltage-gated potassium and calcium currents are present in body wall muscles.
Figure 3: A functional GABA receptor is expressed in the muscle and encoded by the unc-49 gene.
Figure 4: The levamisole-sensitive current is abolished in unc-38(e264) and unc-29(e1072) mutants.
Figure 5: A nicotine-sensitive, rapidly desensitizing acetylcholine receptor is expressed in the muscle.
Figure 6: The nicotine-sensitive acetylcholine receptor is selectively blocked by the nicotinic antagonist dihydro-β-erythroidine (DHβE, 5 μM).
Figure 7: All three receptors are functionally active at the synapse.

References

  1. Chalfie, M. & Jorgensen, E. M. C. elegans neuroscience: genetics to genome. Trends Genet. 14, 506–512 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Jorgensen, E. M. & Nonet, M. L. Neuromuscular junctions in the nematode C. elegans. Dev. Biol. 6, 207–220 (1995).

    Article  CAS  Google Scholar 

  3. Raizen, D. M. & Avery, L. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron 12, 483–495 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nonet, M. L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061–8073 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tempia, F., Bravin, M. & Strata, P. Postsynaptic currents and short-term synaptic plasticity in Purkinje cells grafted onto an uninjured adult cerebellar cortex. Eur. J. Neurosci. 8, 2690–2701 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Eshhar, N., Petralia, R. S., Winters, C. A., Niedzielski, A. S. & Wenthold, R. J. The segregation and expression of glutamate receptor subunits in cultured hippocampal neurons. Neuroscience 57, 943–964 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sillar, K. T. & Roberts, A. Segregation of NMDA and non-NMDA receptors at separate synaptic contacts: evidence from spontaneous EPSPs in Xenopus embryo spinal neurons. Brain Res. 545, 24–32 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Nimnual, A. S., Chang, N. S., Ross, A. F., Gelman, M. S. & Prives, J. M. Identification of phosphorylation sites on AChR delta-subunit associated with dispersal of AChR clusters on the surface of muscle cells. Biochemistry 37, 14823–14832 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Nishizaki, T. & Sumikawa, K. Effects of PKC and PKA phosphorylation on desnsitization of nicotinic acetylcholine receptors. Brain Res. 812, 242–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Paradiso, K. & Brehm, P. Long-term desensitization of nicotinic acteylcholine receptors is regulated via protein kinase A-mediated phosphorylation. J. Neurosci. 18, 9227– 9237 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. De Koninck, P. & Cooper, E. Differential regulation of neuronal nicotinic ACh receptor subunit genes in cultured neonatal rat sympathetic neurons: specific induction of alpha 7 by membrane depolarization through a Ca2+/calmodulin-dependent kinase pathway. J. Neurosci. 15, 7966–7978 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McIntire, S. L., Jorgensen, E. & Horvitz, H. R. Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334– 337 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. McIntire, S. L., Jorgensen, E., Kaplan, J. & Horvitz, H. R. The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337–341 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Lewis, J. A., Wu, C. H., Levine, J. H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967–989 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Bamber, B. A., Beg, A. A., Twyman, R. E. & Jorgensen, E. M. The C. elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348– 5359 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lewis, J. A. et al. Cholinergic receptor mutants of the nematode Caenorhabditis elegans. J. Neurosci. 7, 3059– 3071 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lackner, M. R., Kornfeld, K., Miller, L. M., Horvitz, H. R. & Kim, S. K. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Devel. 8, 160– 173 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Fleming, J. T. et al. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J. Neurosci. 17, 5843–5857 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis, J. A., Wu, C. H., Berg, H. & Levine, J. H. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95, 905–928 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Robertson, S. J. & Martin, R. J. Levamisole-activated single-channel currents from muscle of the nematode parasite Ascaris suum. Br. J. Pharmacol. 108, 170– 178 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zoli, M., Lena, C., Picciotto, M. R. & Changeux, J. P. Identification of four classes of brain nicotinic receptors using β2 mutant mice. J. Neurosci. 18, 4461– 4472 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walrond, J. P. & Stretton, A. O. Excitatory and inhibitory activity in the dorsal musculature of the nematode Ascaris evoked by single dorsal excitatory motonerons. J. Neurosci. 5, 16–22 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moss, B. L. & Role, L. W. Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo. J. Neurosci. 13, 13–28 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hartman, D. S. & Claudio, T. Coexpression of two distinct muscle acetylcholine receptor alpha-subunits during development. Nature 343, 372–375 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Owens, J. L. & Kullberg, R. Three conductance classes of nicotinic acetylcholine receptors are expressed in developing amphibian skeletal muscle. J. Neurosci. 9, 2575–2580 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gardette, R., Listerud, M. D., Brussard, A. B. & Role, L. W. Developmental changes in transmitter sensitivity and synaptic transmission in embryonic chicken sympathetic neurons innervated in vitro. Dev. Biol. 147, 83–95 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Hume, R. I. & Honig, M. G. Physiological properties of newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons. J. Neurobiol. 22, 249– 262 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Role, L. W. Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels. Curr. Opin. Neurobiol. 2, 254–262 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Byerly, L. & Masuda, M. O. Voltage-clamp analysis of the potassium current that produces a negative-going action potential in Ascaris muscle. J. Physiol. (Lond.) 288, 263–284 (1979).

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Broadie, T. Fergestad and D.E. Featherstone for technical assistance, L. Avery and A.V. Maricq for discussions, M. Hammarlund for providing the F21D12.3-GFP strain, K. Knobel for confocal images and K. Broadie and D.E. Featherstone for reading the manuscript. This work was supported by NIH grant RO3 MHS9820-01 (J.E.R.) and the Damon Runyon Fund (E.M.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet E. Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richmond, J., Jorgensen, E. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2, 791–797 (1999). https://doi.org/10.1038/12160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing