Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src

Abstract

Cell motility on extracellular-matrix (ECM) substrates depends on the regulated generation of force against the substrate through adhesion receptors known as integrins. Here we show that integrin-mediated traction forces can be selectively modulated by the tyrosine kinase Src. In Src-deficient fibroblasts, cell spreading on the ECM component vitronectin is inhibited, while the strengthening of linkages between integrin vitronectin receptors and the force-generating cytoskeleton in response to substrate rigidity is dramatically increased. In contrast, Src deficiency has no detectable effects on fibronectin-receptor function. Finally, truncated Src (lacking the kinase domain) co-localizes to focal-adhesion sites with αv but not with β1 integrins. These data are consistent with a selective, functional interaction between Src and the vitronectin receptor that acts at the integrin–cytoskeleton interface to regulate cell spreading and migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vitronectin-receptor-mediated cell spreading is selectively regulated by Src.
Figure 2: Integrin–ligand interactions are unaffected by the absence of Src.
Figure 3: Src selectively modulates integrin-mediated force generation.
Figure 4: GFP-Src distribution is substrate dependent.
Figure 5: Src-251GFP co-localizes with αv but not β1 integrins on the cell surface.

Similar content being viewed by others

References

  1. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 ( 1992).

    Article  CAS  Google Scholar 

  2. Hynes, R. O. & Lander, A. D. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68, 303–322 ( 1992).

    Article  CAS  Google Scholar 

  3. Sheetz, M. P., Felsenfeld, D. P. & Galbraith, C. G. Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol. 8, 51– 54 (1998).

    Article  CAS  Google Scholar 

  4. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  5. Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol. 131, 791–805 (1995).

    Article  CAS  Google Scholar 

  6. Felsenfeld, D. P., Choquet, D. & Sheetz, M. P. Ligand binding regulates the directed movement of beta1 integrins on fibroblasts. Nature 383, 438–440 (1996).

    Article  CAS  Google Scholar 

  7. Galbraith, C. G. & Sheetz, M. P. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94, 9114–9118 (1997).

    Article  CAS  Google Scholar 

  8. Pelham, R. J. Jr & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    Article  CAS  Google Scholar 

  9. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997).

    Article  CAS  Google Scholar 

  10. Kaplan, K. B., Swedlow, J. R., Morgan, D. O. & Varmus, H. E. c-Src enhances the spreading of src-/- fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev. 9, 1505– 1517 (1995).

    Article  CAS  Google Scholar 

  11. Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).

    Article  CAS  Google Scholar 

  12. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    Article  CAS  Google Scholar 

  13. Horton, M. A., Taylor, M. L., Arnett, T. R. & Helfrich, M. H. Arg-Gly-Asp (RGD) peptides and the anti-vitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts. Exp. Cell Res. 195, 368–375 (1991).

    Article  CAS  Google Scholar 

  14. Charo, I. F., Nannizzi, L., Smith, J. W. & Cheresh, D. A. The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin . J. Cell Biol. 111, 2795– 2800 (1990).

    Article  CAS  Google Scholar 

  15. Pierschbacher, M. D. & Ruoslahti, E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J. Biol. Chem. 262, 17294 –17298 (1987).

    CAS  PubMed  Google Scholar 

  16. Simon, K. O., Nutt, E. M., Abraham, D. G., Rodan, G. A. & Duong, L. T. The alphavbeta3 integrin regulates alpha5beta1-mediated cell migration toward fibronectin. J. Biol. Chem. 272, 29380–29389 ( 1997).

    Article  CAS  Google Scholar 

  17. Hughes, P. E. & Pfaff, M. Integrin affinity modulation. Trends Cell Biol. 8, 359–364 (1998).

    Article  CAS  Google Scholar 

  18. Kaplan, K. B. et al. Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. EMBO J. 13, 4745–4756 (1994).

    Article  CAS  Google Scholar 

  19. Fath, K. R., Edgell, C. J. & Burridge, K. The distribution of distinct integrins in focal contacts is determined by the substratum composition. J. Cell Sci. 92, 67–75 (1989).

    PubMed  Google Scholar 

  20. Burridge, K. & Fath, K. Focal contacts: transmembrane links between the extracellular matrix and the cytoskeleton. Bioessays 10, 104–108 ( 1989).

    Article  CAS  Google Scholar 

  21. Lawson, M. A. & Maxfield, F. R. Ca(2+)- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377, 75–79 ( 1995).

    Article  CAS  Google Scholar 

  22. Schwartz, M. A., Schaller, M. D. & Ginsberg, M. H. Integrins: emerging paradigms of signal transduction . Annu. Rev. Cell Dev. Biol. 11, 549– 599 (1995).

    Article  CAS  Google Scholar 

  23. Schaller, M. D. et al. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2- dependent binding of pp60src. Mol. Cell. Biol. 14, 1680–1688 (1994).

    Article  CAS  Google Scholar 

  24. Cobb, B. S., Schaller, M. D., Leu, T. H. & Parsons, J. T. Stable association of pp60src and pp59fyn with the focal adhesion-associated protein tyrosine kinase, pp125FAK. Mol. Cell. Biol. 14, 147–155 (1994).

    Article  CAS  Google Scholar 

  25. Wary, K. K., Mariotti, A., Zurzolo, C. & Giancotti, F. G. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–634 (1998).

    Article  CAS  Google Scholar 

  26. Hruska, K. A., Rolnick, F., Huskey, M., Alvarez, U. & Cheresh, D. Engagement of the osteoclast integrin alpha v beta 3 by osteopontin stimulates phosphatidylinositol 3-hydroxyl kinase activity . Endocrinol. 136, 2984– 2992 (1995).

    Article  CAS  Google Scholar 

  27. Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996).

    Article  CAS  Google Scholar 

  28. Varner, J. A. & Cheresh, D. A. Integrins and cancer. Curr. Opin.Cell Biol. 8 724–730 (1996).

    Article  CAS  Google Scholar 

  29. Yee, K. O., Rooney, M. M., Giachelli, C. M., Lord, S. T. & Schwartz, S. M. Role of beta1 and beta3 integrins in human smooth muscle cell adhesion to and contraction of fibrin clots in vitro. Circ. Res. 83, 241– 251 (1998).

    Article  CAS  Google Scholar 

  30. Schliwa, M. & van Blerkom, J. Structural interaction of cytoskeletal components. J. Cell Biol. 90, 222– 235 (1981).

    Article  CAS  Google Scholar 

  31. Galbraith, C. G., Skalak, R. & Chien, S. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40, 317–330 (1998).

    Article  CAS  Google Scholar 

  32. Marcantonio, E. E. & Hynes, R. O. Antibodies to the conserved cytoplasmic domain of the integrin beta 1 subunit react with proteins in vertebrates, invertebrates, and fungi. J. Cell Biol. 106, 1765–1772 ( 1988).

    Article  CAS  Google Scholar 

  33. Roberts, K., Yokoyama, W. M., Kehn, P. J. & Shevach, E. M. The vitronectin receptor serves as an accessory molecule for the activation of a subset of gamma/delta T cells. J. Exp. Med. 173 , 231–240 (1991).

    Article  CAS  Google Scholar 

  34. Miller, A. D. & Rosman, G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–990 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Leahy, D. J., Aukhil, I. & Erickson, H. P. 2.0 Å crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155–164 ( 1996).

    Article  CAS  Google Scholar 

  36. Gelles, J., Schnapp, B.J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450– 453 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Capel, D. Choquet, H. Erickson, A. Felsenfeld, C. Galbraith, B. McKay and C. Nicchitta for comments on the manuscript; C. Huang, M. Khouri and J. Kuo for technical assistance; and H. Erickson, B. McKay and H. Varmus for essential discussions. This work was supported by a grant from the NIH (to M.P.S.).

Correspondence and requests for materials should be addressed to M.P.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Sheetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felsenfeld, D., Schwartzberg, P., Venegas, A. et al. Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol 1, 200–206 (1999). https://doi.org/10.1038/12021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing