Skip to main content
Article

Cardiovascular Responses to Stress Utilizing Anticipatory Singing Tasks

Published Online:https://doi.org/10.1027/0269-8803/a000269

Abstract. Models of psychobiological stress reactivity have a foundation in the measurement of responses to standardized stress tasks. Tasks with anticipatory phases have been proposed as an effective method of stress induction, either as a stand-alone task or replacement constituent elements for existing stressor paradigms. Tasks utilizing singing as a primary stressor have been proposed but the efficacy of these tasks have not been demonstrated while maintaining adherence to a resting/reactivity/recovery framework desirable for heart rate variability (HRV) measurement. This study examines the viability of an anticipatory sing-a-song task as a method for inducing mental stress and examines the utility of the task with specific reference to measures of cardiovascular reactivity and recovery activity, and standard protocols to examine HRV reactivity and recovery. Participants completed a dual task with a math task and an anticipation of singing component. Responses were examined according to a resting/reactivity/recovery paradigm and the findings indicate that the sing-a-song stimulus is effective in generating a stress response. Significant differences in heart rate and self-reported stress between baseline and stressor conditions were detected, with greater magnitude differences between baseline and anticipatory phases. This study has demonstrated the viability of the anticipation of singing as a standardized stressor using cardiovascular measures and has described variants of this task that may be used for repeated measures study designs.

References

  • Allen, A. P., Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G. (2014). Biological and psychological markers of stress in humans: Focus on the Trier Social Stress Test. Neuroscience & Biobehavioural Reviews, 38, 94–124. https://doi.org/10.1016/j.neubiorev.2013.11.005 First citation in articleCrossrefGoogle Scholar

  • Allen, A. P., Kennedy, P. J., Dockray, S., Cryan, J. F., Dinan, T. G., & Clarke, G. (2017). The Trier Social Stress test: Principles and practice. Neurobiology of Stress, 6, 113–126. https://doi.org/10.1016/j.ynstr.2016.11.001 First citation in articleCrossrefGoogle Scholar

  • Antelmi, I., De Paula, R. S., Shinzato, A. R., Peres, C. A., Mansur, A. J., & Grupi, C. J. (2004). Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. The American Journal of Cardiology, 93(3), 381–385. https://doi.org/10.1016/j.amjcard.2003.09.065 First citation in articleCrossrefGoogle Scholar

  • Arvidson, E., Sjörs, A., & Jonsdottir, I. H. (2017). Perceived stress and physiological reactions to repeated TSST in healthy individuals. Psychoneuroendocrinology, 83, 15. https://doi.org/10.1016/j.psyneuen.2017.07.278 First citation in articleCrossrefGoogle Scholar

  • Bernardi, L., Valle, F., Coco, M., Calciati, A., & Sleight, P. (1996). Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovascular Research, 32(2), 234–237. https://doi.org/10.1016/0008-6363(96)00081-8 First citation in articleCrossrefGoogle Scholar

  • Billman, G. E. (2011). Heart rate variability – a historical perspective. Frontiers in Physiology, 2, Article 86. https://doi.org/10.3389/fphys.2011.00086 First citation in articleCrossrefGoogle Scholar

  • Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in Physiology, 4, Article 26. https://doi.org/10.3389/fphys.2013.00026 First citation in articleCrossrefGoogle Scholar

  • Birkett, M. A. (2011). The Trier Social Stress Test protocol for inducing psychological stress. Journal of Visualized Experiments, 56, Article e3238. https://doi.org/10.3791/3238 First citation in articleGoogle Scholar

  • Blascovich, J. J., & Katkin, E. S. (1993). Cardiovascular reactivity to psychological stress & disease, American Psychological Association. First citation in articleCrossrefGoogle Scholar

  • Boyle, N. B., Lawton, C., Arkbåge, K., West, S. G., Thorell, L., Hofman, D., Weeks, A., Myrissa, K., Croden, F., & Dye, L. (2016). Stress responses to repeated exposure to a combined physical and social evaluative laboratory stressor in young healthy males. Psychoneuroendocrinology, 63, 119–127. https://doi.org/10.1016/j.psyneuen.2015.09.025 First citation in articleCrossrefGoogle Scholar

  • Brage, S., Brage, N., Ekelund, U., Luan, J., Franks, P. W., Froberg, K., & Wareham, N. J. (2006). Effect of combined movement and heart rate monitor placement on physical activity estimates during treadmill locomotion and free-living. European Journal of Applied Physiology, 96(5), 517–524. https://doi.org/10.1007/s00421-005-0112-6 First citation in articleCrossrefGoogle Scholar

  • Brouwer, A. M., & Hogervorst, M. A. (2014). A new paradigm to induce mental stress: The Sing-a-Song Stress Test (SSST). Frontiers in Neuroscience, 8, Article 224. https://doi.org/10.3389/fnins.2014.00224 First citation in articleCrossrefGoogle Scholar

  • Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30(9), 846–856. https://doi.org/10.1016/j.psyneuen.2005.02.010 First citation in articleCrossrefGoogle Scholar

  • CamNtech. (2010). The Actiheart guide to getting started. Options, 37(April), 1–39. https://www.salusa.se/Filer/Produktinfo/Aktivitet/TheActiheartGuidetoGettingStarted.pdf First citation in articleGoogle Scholar

  • Chida, Y., & Hamer, M. (2008). Chronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: A quantitative review of 30 years of investigations. Psychological Bulletin, 134(6), 829–885. https://doi.org/10.1037/a0013342 First citation in articleCrossrefGoogle Scholar

  • ChuDuc, H., NguyenPhan, K., & NguyenViet, D. (2013). A review of heart rate variability and its applications. APCBEE Procedia, 7, 80–85. https://doi.org/10.1016/j.apcbee.2013.08.016 First citation in articleCrossrefGoogle Scholar

  • Crouter, S. E., Churilla, J. R., & Bassett, D. R. (2008). Accuracy of the Actiheart for the assessment of energy expenditure in adults. European Journal of Clinical Nutrition, 62(6), 704–711. https://doi.org/10.1038/sj.ejcn.1602766 First citation in articleCrossrefGoogle Scholar

  • Everson, S. A., Lynch, J. W., Chesney, M. A., Kaplan, G. A., Goldberg, D. E., Shade, S. B., Cohen, R. D., Salonen, R., & Salonen, J. T. (1997). Interaction of workplace demands and cardiovascular reactivity in progression of carotid atherosclerosis: population based study. BMJ Clinical Research, 314(7080), 553–558. https://doi.org/10.1136/bmj.314.7080.553 First citation in articleCrossrefGoogle Scholar

  • Fishel, S. R., Muth, E. R., & Hoover, A. W. (2007). Establishing appropriate physiological baseline procedures for real-time physiological measurement. Journal of Cognitive Engineering and Decision Making, 1(3), 286–308. https://doi.org/10.1518/155534307X255636 First citation in articleCrossrefGoogle Scholar

  • Gerra, G., Zaimovic, A., Zambelli, U., Timpano, M., Reali, N., Bernasconi, S., & Brambilla, F. (2000). Neuroendocrine responses to psychological stress in adolescents with anxiety disorder. Neuropsychobiology, 42(2), 82–92. https://doi.org/10.1159/000026677 First citation in articleCrossrefGoogle Scholar

  • Heathers, J. A., & Goodwin, M. S. (2017). Dead science in live psychology: A case study from heart rate variability (HRV). PsyArXiv, https://doi.org/10.31234/osf.io/637ym First citation in articleGoogle Scholar

  • Hofmann, S. G., Moscovitch, D. A., & Kim, H. J. (2006). Autonomic correlates of social anxiety and embarrassment in shy and non-shy individuals. International Journal of Psychophysiology, 61(2), 134–142. https://doi.org/10.1016/j.ijpsycho.2005.09.003 First citation in articleCrossrefGoogle Scholar

  • Huang, W. L., Chang, L. R., Kuo, T. B. J., Lin, Y. H., Chen, Y. Z., & Yang, C. C. H. (2013). Gender differences in personality and heart-rate variability. Psychiatry Research, 209(3), 652–657. https://doi.org/10.1016/j.psychres.2013.01.031 First citation in articleCrossrefGoogle Scholar

  • Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test” – a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1–2), 76–81. https://doi.org/10.1159/000119004 First citation in articleCrossrefGoogle Scholar

  • Kemp, A. H., & Quintana, D. S. (2013). The relationship between mental and physical health: Insights from the study of heart rate variability. International Journal of Psychophysiology, 89(3), 288–296. https://doi.org/10.1016/j.ijpsycho.2013.06.018 First citation in articleCrossrefGoogle Scholar

  • Koenig, J., & Thayer, J. F. (2016). Sex differences in healthy human heart rate variability: A meta-analysis. Neuroscience & Biobehavioral Reviews, 64, 288–310. https://doi.org/10.1016/j.neubiorev.2016.03.007 First citation in articleCrossrefGoogle Scholar

  • Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394–421. https://doi.org/10.1016/j.biopsycho.2010.03.010 First citation in articleCrossrefGoogle Scholar

  • Kristiansen, J., Korshøj, M., Skotte, J. H., Jespersen, T., Søgaard, K., Mortensen, O. S., & Holtermann, A. (2011). Comparison of two systems for long-term heart rate variability monitoring in free-living conditions – a pilot study. Biomedical Engineering Online, 10(1), Article 27. https://doi.org/10.1186/1475-925X-10-27 First citation in articleCrossrefGoogle Scholar

  • Kudielka, B. M., Buske-Kirschbaum, A., Hellhammer, D. H., & Kirschbaum, C. (2004). HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: Impact of age and gender. Psychoneuroendocrinology, 29(1), 83–98. https://doi.org/10.1016/S0306-4530(02)00146-4 First citation in articleCrossrefGoogle Scholar

  • Kudielka, B. M., Hellhammer, D. H., & Kirschbaum, C. (2007). Ten years of research with the Trier Social Stress Test – revisited. In E. Harmon-JonesP. WinkielmanEds., Social neuroscience: Integrating biological and psychological explanations of social behavior (pp. 56–83). The Guilford Press. First citation in articleGoogle Scholar

  • Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, Article 213. https://doi.org/10.3389/fpsyg.2017.00213 First citation in articleCrossrefGoogle Scholar

  • Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32(3), 230–236. https://doi.org/10.1109/TBME.1985.325532 First citation in articleCrossrefGoogle Scholar

  • Peirce, J. (2019). PsychoPy (Version 3) [Software]. Open Science Tools Ltd. https://www.psychopy.org First citation in articleGoogle Scholar

  • Peters, A., McEwen, B. S., & Friston, K. (2017). Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Progress in Neurobiology, 156, 164–188. https://doi.org/10.1016/j.pneurobio.2017.05.004 First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42(2), 123–146. https://doi.org/10.1016/S0167-8760(01)00162-3 First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116–143. https://doi.org/10.1016/j.biopsycho.2006.06.009 First citation in articleCrossrefGoogle Scholar

  • Quintana, D. S., Guastella, A. J., Outhred, T., Hickie, I. B., & Kemp, A. H. (2012). Heart rate variability is associated with emotion recognition: Direct evidence for a relationship between the autonomic nervous system and social cognition. International Journal of Psychophysiology, 86(2), 168–172. https://doi.org/10.1016/j.ijpsycho.2012.08.012 First citation in articleCrossrefGoogle Scholar

  • Quintana, D. S., & Heathers, J. A. (2014). Considerations in the assessment of heart rate variability in biobehavioural research. Frontiers in Psychology, 5, Article 805. https://doi.org/10.3389/fpsyg.2014.00805 First citation in articleCrossrefGoogle Scholar

  • Rautaharju, P. M., Park, L., Rautaharju, F. S., & Crow, R. (1998). A standardized procedure for locating and documenting ECG chest electrode positions: Consideration of the effect of breast tissue on ECG amplitudes in women. Journal of Electrocardiology, 31(1), 17–29. https://doi.org/10.1016/S0022-0736(98)90003-6 First citation in articleCrossrefGoogle Scholar

  • Reyes del Paso, G. A., Langewitz, W., Mulder, L. J. M., van Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology, 50(5), 477–487. https://doi.org/10.1111/psyp.12027 First citation in articleCrossrefGoogle Scholar

  • Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65(3), 450–460. https://doi.org/10.1097/01.PSY.0000035721.12441.17 First citation in articleCrossrefGoogle Scholar

  • Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, Article 258. https://doi.org/10.3389/fpubh.2017.00258 First citation in articleCrossrefGoogle Scholar

  • Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, Article 1040. https://doi.org/10.3389/fpsyg.2014.01040 First citation in articleCrossrefGoogle Scholar

  • Sumter, S. R., Bokhorst, C. L., Miers, A. C., Van Pelt, J., & Westenberg, P. M. (2010). Age and puberty differences in stress responses during a public speaking task: Do adolescents grow more sensitive to social evaluation? Psychoneuroendocrinology, 35(10), 1510–1516. https://doi.org/10.1016/j.psyneuen.2010.05.004 First citation in articleCrossrefGoogle Scholar

  • Taylor, J. A., Carr, D. L., Myers, C. W., & Eckberg, D. L. (1998). Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation, 98(6), 547–555. https://doi.org/10.1161/01.CIR.98.6.547 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews, 36(2), 747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216. https://doi.org/10.1016/S0165-0327(00)00338-4 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122–131. https://doi.org/10.1016/j.ijcard.2009.09.543 First citation in articleCrossrefGoogle Scholar

  • Young, E. A., Abelson, J. L., & Cameron, O. G. (2004). Effect of comorbid anxiety disorders on the hypothalamic-pituitary-adrenal axis response to a social stressor in major depression. Biological Psychiatry, 56(2), 113–120. https://doi.org/10.1016/j.biopsych.2004.03.017 First citation in articleCrossrefGoogle Scholar

  • Young, E. A., Lopez, J. F., Murphy-Weinberg, V., Watson, S. J., & Akil, H. (2000). Hormonal evidence for altered responsiveness to social stress in major depression. Neuropsychopharmacology, 23(4), 411–418. https://doi.org/10.1016/S0893-133X(00)00129-9 First citation in articleCrossrefGoogle Scholar