Skip to main content
Published Online:https://doi.org/10.1026/0012-1924/a000040

Zusammenfassung. Selbstauskünfte leisten bedeutsame Beiträge zur Aufklärung interindividueller Unterschiede in der räumlichen Orientierung. Es wird über die Entwicklung und Validierung des deutschen Fragebogens Räumliche Strategien (FRS) berichtet, der Selbstauskünfte zu räumlichen Strategien für die Orientierung in realen Umgebungen erhebt. Die mehrdimensionale Faktorstruktur des Fragebogens reflektiert unterschiedliche räumliche Strategiekomponenten. In der FRS-Skala „Orientierung global/egozentrisch” werden Strategien erfasst, die auf einer egozentrischen räumlichen Perspektive basieren. Diese Strategiekomponenten sind mit einer globalen Einschätzung der eigenen Orientierungsfähigkeit assoziiert. Die FRS-Skala „Überblick” erfasst eine allozentrische Strategie zur Bildung einer mentalen Karte. Die FRS-Skala „Himmelsrichtung” erfasst die Kenntnis der Himmelsrichtungen. Die Skalen prädizieren das räumliche Lernen in einer realen Umgebung und besitzen inkrementelle Validität über relevante kognitive Prädiktoren der visuell-räumlichen Informationsverarbeitung hinaus. Eine konfirmatorische Faktorenanalyse bestätigte die Dimensionalität des Instruments.


Development and validation of a self-report measure of environmental spatial strategies

Abstract. Self-report measures can contribute to explaining individual differences in environmental spatial cognition. The development and validation of a German self-report measure of spatial orientation strategies is described. The factor structure of the self-report measure reflects different strategic aspects in spatial orientation. The ”global-egocentric orientation” scale comprises indicators of general ability and egocentric strategies which are based on knowledge of directions and knowledge of routes. The ”survey” scale comprises indicators of mental map formation. The ”cardinal directions” scale comprises indicators of knowledge of cardinal directions. The scales predicted spatial learning in a real environment and showed incremental validity over relevant predictors of cognitive visual-spatial ability. Confirmatory factor analysis supported the dimensionality of the self-report measure.

Literatur

  • Aginsky, V. , Harris, C. , Rensink, R. , Beusmans, J. (1997). Two strategies for learning a route in a driving simulator. Journal of Environmental Psychology, 17, 317–331. CrossrefGoogle Scholar

  • Allen, G. L. , Kirasic, K. C. , Dobson, S. H. , Long, R. G. , Beck, S. (1996). Predicting environmental learning from spatial abilities: An indirect route. Intelligence, 22, 327–355. CrossrefGoogle Scholar

  • Bollen, K. A. , Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods and Research, 21, 205–229. CrossrefGoogle Scholar

  • Brooks, L. R. (1967). The suppression of visualization by reading. Quarterly Journal of Experimental Psychology, 19, 289–299. CrossrefGoogle Scholar

  • Browne, M. W. , Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage. Google Scholar

  • Bryant, K. J. (1982). Personality correlates of sense of direction and geographic orientation. Journal of Personality and Social Psychology, 43, 1318–1324. CrossrefGoogle Scholar

  • Bryant, K. J. (1991). Geographical/spatial orientation ability within real-world and simulated large-scale environments. Multivariate Behavioral Research, 26, 109–136. CrossrefGoogle Scholar

  • Burnham, K. P. , Anderson, D. R. (1998). Model selection and inference: A practical information-theoretic approach. New York: Springer-Verlag. CrossrefGoogle Scholar

  • Coluccia, E. , Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24, 329–340. CrossrefGoogle Scholar

  • Devlin, A. S. , Bernstein, G. (1995). Interactive wayfinding: Use of cues by men and women. Journal of Environmental Psychology, 15, 23–38. CrossrefGoogle Scholar

  • Ekstrom, R. B. , French, J. W. , Harmann, H. H. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service. Google Scholar

  • Evans, G. W. (1980). Environmental cognition. Psychological Bulletin, 88, 259–287. CrossrefGoogle Scholar

  • Hart, R. A. , Moore, G. T. (1973). The development of spatial cognition: A review. In R. M. Downs, D. Stea (Eds.), Image and Environment (pp. 246–288). Chicago: Aldine. Google Scholar

  • Hegarty, M. , Montello, D. R. , Richardson, A. E. , Ishikawa, T. , Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34, 151–176. CrossrefGoogle Scholar

  • Hegarty, M. , Richardson, A. E. , Montello, D. R. , Lovelace, K. , Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30, 425–447. CrossrefGoogle Scholar

  • Hegarty, M. , Waller, D. (2004). A dissociation between mental rotation and perspective-taking abilities. Intelligence, 32, 175–191. CrossrefGoogle Scholar

  • Hegarty, M. , Waller, D. (2005). Individual differences in spatial abilities. In P. Shah, A. Miayke (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge University Press. CrossrefGoogle Scholar

  • Hu, L. , Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling 6 (1), 1–55. CrossrefGoogle Scholar

  • Just, M. A. , Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychologcal Review, 92, 137–172. CrossrefGoogle Scholar

  • Kline, R. B. (2005). Principles and practice of structural equation modeling. Second Edition. NY: Guilford Press. Google Scholar

  • Kozhevnikov, M. , Hegarty, M. (2001). A dissociation between object-manipulation spatial ability and spatial orientation abilities. Memory and Cognition, 29, 745–756. CrossrefGoogle Scholar

  • Kozlowsky, L. T. , Bryant, K. J. (1977). Sense of direction, spatial orientation, and cognitive maps. Journal of Experimental Psychology: Human Perception and Performance, 3, 590–598. CrossrefGoogle Scholar

  • Linn, M. C. , Peterson, A.C. (1985). Emergence and characterization of sex-differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498. CrossrefGoogle Scholar

  • Malinoswki, J. C. , Gillespie, W. T. (2001). Individual differences in performance on a large-scale, real-world wayfinding task. Journal of Environmental Psychology, 21, 73–82. CrossrefGoogle Scholar

  • Marsh, H. W. , Hau, K. T. , Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11 (3), 320–341. Google Scholar

  • Meilinger, T. , Knauff, M. (2004). FSBSOD: Freiburg Version of the Santa Barbara Sense of Direction Scale. Retrieved August 18, 2009, from cognition.iig.uni-freiburg.de/research/online-experiments/fsbsod.pdf. Google Scholar

  • Montello, D. R. , Pick, H. L. (1993). Integrating knowledge of vertically aligned large-scale spaces. Environment and Behavior, 25, 457–484. CrossrefGoogle Scholar

  • Montello, D. R. , Lovelace, K. L. , Golledge, R. G. , Self, C. M. (1999). Sex-related differences and similarities in geographic and environmental spatial abilities. Annals of the Association of American Geographers, 89, 515–534. CrossrefGoogle Scholar

  • Nguyen, H. D. , Ryan, A. M. (2008). Does stereotype threat affect test performance of minorities and women? A meta-analysis of experimental evidence. Journal of Applied Psychology, 93, 1314–1334. CrossrefGoogle Scholar

  • Pazzaglia, F. , Cornoldi, C. , De Beni, R. (2000). Differenze individuali nella rappresentazione dello spazio e nell’abilità di orientamento: Presentazione di un questionario autovalutativo. Giornale Italiano di Psicologia, 3, 627–630. Google Scholar

  • Pazzaglia, F. , De Beni, R. (2001). Strategies of processing spatial information in survey and landmark-centered individuals. European Journal of Cognitive Psychology, 13, 493–508. CrossrefGoogle Scholar

  • Pearson, J. L. , Ialongo, N. S. (1986). The relationship between spatial ability and environmental knowledge. Journal of Environmental Psychology, 6, 299–304. CrossrefGoogle Scholar

  • Prestopnik, J. L. , Roskos-Ewoldson, B. (2000). The relations among wayfinding strategy use, sense of direction, sex, familiarity, and wayfinding ability. Journal of Environmental Psychology, 20, 177–191. CrossrefGoogle Scholar

  • Richardson, A. E. , Montello, D. R. , Hegarty, M. (1999). Spatial knowledge acquition from maps and from navigation in real and virtual environments. Memory and Cognition, 27, 741–750. CrossrefGoogle Scholar

  • Russell, D. W. (2002). In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Personality and Social Psychology Bulletin, 28, 1629–1646. CrossrefGoogle Scholar

  • Russell, J. A. , Ward, L. M. (1982). Environmental psychology. Annual Review of Psychology, 33, 651–689. CrossrefGoogle Scholar

  • Schermelleh-Engel, K. , Moosbrugger, H. , Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8 (2), 23–74. Google Scholar

  • Shelton, A. L. , McNamara, T. P. (2004). Orientation and perspective dependence in route and survey learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 30, 158–170. CrossrefGoogle Scholar

  • Sholl, M. J. (1988). The relationship between sense of direction and mental geographic updating. Intelligence, 12, 299–314. CrossrefGoogle Scholar

  • Sholl, M. J. , Acacio, J. C. , Makar, R. O. , Leon, C. (2000). The relation of sex and sense of direction to spatial orientation in an unfamiliar environment. Journal of Environmental Psychology, 20, 17–28. CrossrefGoogle Scholar

  • Shrout, P. E. , Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 85, 420–428. CrossrefGoogle Scholar

  • Siegel, A. W. , White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9–55. CrossrefGoogle Scholar

  • Taylor, H. A. , Tversky, B. (1992). Spatial mental models derived from survey and route descriptions. Journal of Memory and Language, 31, 261–292. CrossrefGoogle Scholar

  • Thorndyke, P.W. , Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589. CrossrefGoogle Scholar

  • Vandenberg, S. G. , Kuse, A. R. , Vogler, G. P. (1985). Searching for correlates of spatial ability. Perceptual and Motor Skills, 60, 343–350. CrossrefGoogle Scholar