Skip to main content
Original Article

Developmental Differences in Visual and Auditory Attention: a Cross-Sectional Study

Published Online:https://doi.org/10.1024/1016-264X/a000126

The purpose of this cross-sectional study was to compare performance on visual and auditory attention tasks along with the developmental trajectories of these systems. Participants between 7 and 77 years of age were examined: 490 subjects (229 males and 261 females) completed the visual and auditory part of a focused-attention task, and 688 subjects (320 males and 368 females) were tested with an alertness task in the two different modalities. Shorter reaction times were observed in the visual condition compared to the auditory condition. This difference was particularly large for children and for the more complex, focused-attention task. However, the gap between the two modalities decreased with age, resulting in significant interaction effects between age and modality for both attention tasks. Attentional performance increased with age, and maximum performance was achieved in early adulthood. For nearly all performance variables, no decrease could be detected with increasing age. In addition, the results of a principal components analysis suggest that, independent of modality, all alertness variables load on one component, whereas the performance variables of the visual and the auditory focused-attention task load on two separate components. Thus, our data suggest that visual and auditory attention rely on distinct attentional systems within the selectivity domain of attention and have distinct developmental trajectories.


Unterschiede in der Entwicklung von visueller und auditiver Aufmerksamkeit: eine Querschnittstudie

Ziel der Querschnittstudie war es, die visuelle und auditive Aufmerksamkeit inklusive ihrer Entwicklungsaspekte miteinander zu vergleichen. Probanden zwischen 7 und 77 Jahren nahmen an der Studie teil. 490 Probanden (229 männlich und 261 weiblich) führten eine visuelle und auditive Aufgabe zur fokussierten Aufmerksamkeit durch und 688 Probanden (320 männlich und 368 weiblich) wurden mit einer Alertness Aufgabe mit beiden Modalitäten untersucht. In den visuellen Aufgaben wurden im Vergleich zu den auditiven Aufgaben geringere Reaktionszeiten festgestellt. Dieser Unterschied war besonders deutlich bei Kindern und der eher komplexeren Aufgabe zur fokussierten Aufmerksamkeit. Der Unterschied zwischen den beiden Modalitäten nimmt jedoch mit zunehmendem Alter ab. Demnach gibt es in beiden Aufgaben einen signifikanten Interaktionseffekt zwischen Alter und Modalität. Die Aufmerksamkeitsleistungen verbessern sich zudem mit zunehmendem Alter und erreichen ihr Maximum im jungen Erwachsenenalter. Für nahezu alle Variablen konnte im höheren Alter keine bedeutsame Abnahme der Leistungen festgestellt werden. In einer durchgeführten Faktorenanalyse laden alle Variablen der Alertness Aufgabe, unabhängig von ihrer Modalität, auf einer Komponente. In der fokussierten Aufmerksamkeitsaufgabe laden die auditiven und visuellen Variablen hingegen auf zwei unabhängigen Komponenten. Demnach sprechen die Ergebnisse dafür, dass visuelle und auditive Aufmerksamkeit zumindest im Bereich der Selektivität auf unterschiedlichen Systemen beruhen und sie sich verschieden entwickeln.

References

  • Anderson, V. , Anderson, P. , Northam, E. , Jacobs, R. & Catroppa, C. (2001). Development of Executive Functions Through Late Childhood and Adolescence in an Australian Sample. Developmental Neuropsychology, 20, 385 – 406. First citation in articleCrossrefGoogle Scholar

  • Aylward, G. P. , Brager, P. & Harper, D. C. (2002). Relations between visual and auditory continuous performance tests in a clinical population: a descriptive study. Developmental Neuropsychology, 21, 285 – 303. First citation in articleCrossrefGoogle Scholar

  • Baker, D. B. , Taylor, C. J. & Leyva, C. (1995). Continuous performance tests: a comparison of modalities. Journal of Clinical Psychology, 51, 548 – 551. First citation in articleCrossrefGoogle Scholar

  • Barr, R. A. & Giambra, L. M. (1990). Age-related decrement in auditory selective attention. Psychology and Aging, 5, 597 – 599. First citation in articleCrossrefGoogle Scholar

  • Corbetta, M. , Miezin, F. M. , Dobmeyer, S. , Shulman, G. L. & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. Journal of Neuroscience, 11, 2402. First citation in articleCrossrefGoogle Scholar

  • Coull, J. T. , Buchel, C. , Friston, K. J. & Frith, C. D. (1999). Noradrenergically mediated plasticity in a human attentional neuronal network. Neuroimage, 10, 705 – 715. First citation in articleCrossrefGoogle Scholar

  • Curtindale, L. , Laurie-Rose, C. , Bennett-Murphy, L. & Hull, S. (2007). Sensory modality, temperament, and the development of sustained attention: a vigilance study in children and adults. Developmental Psychology, 43, 576 – 589. First citation in articleCrossrefGoogle Scholar

  • Davidson, M. C. , Amso, D. , Anderson, L. C. & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44, 2037 – 2078. First citation in articleCrossrefGoogle Scholar

  • De Luca, C. R. , Wood, S. J. , Anderson, V. , Buchanan, J. A. , Proffitt, T. M. , Mahony, K. et al. (2003). Normative data from the CANTAB. I: development of executive function over the lifespan. Journal of Clinical and Experimental Neuropsychology, 25, 242 – 254. First citation in articleCrossrefGoogle Scholar

  • Downar, J. , Crawley, A. P. , Mikulis, D. J. & Davis, K. D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience, 3, 277 – 283. First citation in articleCrossrefGoogle Scholar

  • Droit-Volet, S. , Meck, W. H. & Penney, T. B. (2007). Sensory modality and time perception in children and adults. Behavioural Processes, 74, 244 – 250. First citation in articleCrossrefGoogle Scholar

  • Fritz, J. B. , Elhilali, M. , David, S. V. & Shamma, S. A. (2007). Auditory attention–focusing the searchlight on sound. Current Opinion in Neurobiology, 17, 437 – 455. First citation in articleCrossrefGoogle Scholar

  • Gogtay, N. , Giedd, J. N. , Lusk, L. , Hayashi, K. M. , Greenstein, D. , Vaituzis, A. C. et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. PNAS, 101, 8174 – 8179. First citation in articleCrossrefGoogle Scholar

  • Gomes, H. , Duff, M. , Barnhardt, J. , Barrett, S. & Ritter, W. (2007). Development of auditory selective attention: event-related potential measures of channel selection and target detection. Psychophysiology, 44, 711 – 727. First citation in articleCrossrefGoogle Scholar

  • Gomes, H. , Molholm, S. , Christodoulou, C. , Ritter, W. & Cowan, N. (2000). The development of auditory attention in children. Frontiers in Bioscience, 5, D108 – 120. First citation in articleCrossrefGoogle Scholar

  • Gomez-Perez, E. & Ostrosky-Solis, F. (2006). Attention and memory evaluation across the life span: heterogeneous effects of age and education. Journal of Clinical and Experimental Neuropsychology, 28, 477 – 494. First citation in articleCrossrefGoogle Scholar

  • Günther, T. , Jolles, J. , Herpertz-Dahlmann, B. & Konrad, K. (2009). Age-dependent differences in attentional processes in ADHD and Disruptive Behavior Disorder. Developmental Neuropsychology, 34, 422 – 434. First citation in articleCrossrefGoogle Scholar

  • Hugdahl, K. , Westerhausen, R. , Alho, K. , Medvedev, S. , Laine, M. & Hamalainen, H. (2009). Attention and cognitive control: unfolding the dichotic listening story. Scandinavian Journal of Psychology, 50, 11 – 22. First citation in articleCrossrefGoogle Scholar

  • Johnson, C. E. (2000). Children’s phoneme identification in reverberation and noise. Journal of Speech, Language, and Hearing Research, 43, 144 – 157. First citation in articleCrossrefGoogle Scholar

  • Klenberg, L. , Korkman, M. & Lahti-Nuuttila, P. (2001). Differential development of attention and executive functions in 3- to 12-year-old Finnish children. Developmental Neuropsychology, 20, 407 – 428. First citation in articleCrossrefGoogle Scholar

  • Klimkeit, E. I. , Mattingley, J. B. , Sheppard, D. M. , Farrow, M. & Bradshaw, J. L. (2004). Examining the development of attention and executive functions in children with a novel paradigm. Child Neuropsychology, 10, 201 – 211. First citation in articleCrossrefGoogle Scholar

  • Lehman, E. B. , Olson, V. A. , Aquilino, S. A. & Hall, C. A. (2006). Auditory and Visual Continuous Performance Tests: Relationships with Age, Gender, Cognitive Functioning, and Classroom Behaviour. Journal of Psychoeducational Assessment, 24, 36 – 51. First citation in articleCrossrefGoogle Scholar

  • McDaniel, M. A. , Einstein, G. O. , Stout, A. C. & Morgan, Z. (2003). Aging and maintaining intentions over delays: do it or lose it. Psychology and Aging, 18, 823 – 835. First citation in articleCrossrefGoogle Scholar

  • McDoud, J. M. & Shaw, R. J. (2000). Attention and Aging: A functional perspective. In F. I. M. Craik & T. A. Salthouse (Eds.), The Handbook of Aging and Cognnition (pp. 221 – 292). Hillsdale: Earlbaum. First citation in articleGoogle Scholar

  • Mottaghy, F. M. , Willmes, K. , Horwitz, B. , Muller, H. W. , Krause, B. J. & Sturm, W. (2006). Systems level modeling of a neuronal network subserving intrinsic alertness. Neuroimage, 29, 225 – 233. First citation in articleCrossrefGoogle Scholar

  • Mozolic, J. L. , Hugenschmidt, C. E. , Peiffer, A. M. & Laurienti, P. J. (2008). Modality-specific selective attention attenuates multisensory integration. Experimental Brain Research, 184, 39 – 52. First citation in articleCrossrefGoogle Scholar

  • Pearson, D. A. & Lane, D. M. (1991). Auditory attention switching: a developmental study. Journal of Experimental Child Psychology, 51, 320 – 334. First citation in articleCrossrefGoogle Scholar

  • Plude, D. J. , Enns, J. T. & Brodeur, D. (1994). The development of selective attention: a life-span overview. Acta Psychologica, 86, 227 – 272. First citation in articleCrossrefGoogle Scholar

  • Posner, M. I. (2008). Measuring alertness. Annals of the New York Academy of Sciences, 1129, 193 – 199. First citation in articleCrossrefGoogle Scholar

  • Quay, L. C. & Weld, G. L. (1980). Visual and auditory selective attention and reflection-impulsivity in normal and learning-disabled boys at two age levels. Journal of Abnormal Child Psychology, 8, 117 – 125. First citation in articleCrossrefGoogle Scholar

  • Siegel, J. (2004). Brain mechanisms that control sleep and waking. Naturwissenschaften, 91, 355 – 365. First citation in articleCrossrefGoogle Scholar

  • Spikman, J. M. , Kiers, H. A. , Deelman, B. G. & van Zomeren, A. H. (2001). Construct validity of concepts of attention in healthy controls and patients with CHI. Brain and Cognition, 47, 446 – 460. First citation in articleCrossrefGoogle Scholar

  • SPSS-Inc. (2008). Statistical Package of Social Science 16. Chicago: SPSS-Inc. First citation in articleGoogle Scholar

  • Sturm, W. , de Simone, A. , Krause, B. J. , Specht, K. , Hesselmann, V. , Radermacher, I. et al. (1999). Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia, 37, 797 – 805. First citation in articleCrossrefGoogle Scholar

  • Sturm, W. , Longoni, F. , Fimm, B. , Dietrich, T. , Weis, S. , Kemna, S. et al. (2004). Network for auditory intrinsic alertness: a PET study. Neuropsychologia, 42, 563 – 568. First citation in articleCrossrefGoogle Scholar

  • Sturm, W. , Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14, 76 – 84. First citation in articleCrossrefGoogle Scholar

  • Sturm, W. (2008). WAF – Wahrnehmungs- und Aufmerksamkeitsfunktionen. Mödling: Schuhfried. First citation in articleGoogle Scholar

  • Szalma, J. L. , Warm, J. S. , Matthews, G. , Dember, W. N. , Weiler, E. M. , Meier, A. et al. (2004). Effects of sensory modality and task duration on performance, workload, and stress in sustained attention. Human Factors, 46, 219 – 233. First citation in articleCrossrefGoogle Scholar

  • Thiel, C. M. & Fink, G. R. (2007). Visual and auditory alertness: modality-specific and supramodal neural mechanisms and their modulation by nicotine. Journal of Neurophysiology, 97, 2758 – 2768. First citation in articleCrossrefGoogle Scholar

  • Tschopp, C. , Safran, A. B. , Viviani, P. , Bullinger, A. , Reicherts, M. & Mermoud, C. (1998). Automated visual field examination in children aged 5 – 8 years. Part I: Experimental validation of a testing procedure. Vision Research, 38, 2203 – 2210. First citation in articleCrossrefGoogle Scholar

  • Verhaeghen, P. & Cerella, J. (2002). Aging, executive control, and attention: a review of meta-analyses. Neuroscience and Biobehavioral Reviews, 26, 849 – 857. First citation in articleCrossrefGoogle Scholar

  • Werner, L. A. (2007). Issues in human auditory development. Journal of Communication Disorders, 40, 275 – 283. First citation in articleCrossrefGoogle Scholar