Skip to main content
Log in

Analysis of the Structure of the PsbO Protein and its Implications

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The PsbO protein is a ubiquitous extrinsic subunit of Photosystem II (PS II), the water splitting enzyme of photosynthesis. A recently determined 3D X-ray structure of a cyanobacterial protein bound to PS II has given an opportunity to conduct complete analyses of its sequence and structural characteristics using bioinformatic methods. Multiple sequence alignments for the PsbO family are constructed and correlated with the cyanobacterial structure. We identify the most conserved regions of PsbO and the mapping of their positions within the structure indicates their functional roles especially in relation to interactions of this protein with the lumenal surface of PS II. Homologous models for eukaryotic PsbO were built in order to compare with the prokaryotic protein. We also explore structural homology between PsbO and other proteins for which 3D structures are known and determine its structural classification. These analyses contribute to the understanding of the function and evolutionary origin of the PS II manganese stabilising protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerlund H and Jansson C (1981) Localization of a 34,000 and a 23,000 Mr polypeptide to the lumenal side of the thylakoid membrane. FEBS Lett 124: 229–232

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Andersson B and Barber J (1996) Mechanisms of photodamage of protein degradation during photoinhibition of photosystem two. In: Baker NR (ed) Advances in Photosynthesis: Photosynthesis and the Environment, pp 101–121. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Archer MD and Barber J (2004) Molecular to global photosynthesis: In: Archer MD and Barber J (eds) Photoconversion of Solar Energy, Vol II, pp 1–34. Imperial College Press, London

    Google Scholar 

  • Barbato R, Friso G, Rigoni F, Dalla Vecchia F and GiacomettiGM (1992) Structural changes and lateral redistribution of PS II during donor side photoinhibition of thylakoids. J Cell Biol 119: 325–335

    Article  PubMed  CAS  Google Scholar 

  • Betts SD, Ross JR, Hall KU, Pichersky E and Yocum CF (1996) Functional reconstitution of Photosystem II with recombinant manganese-stabilizing proteins containing mutations that remove the disulfide bridge. Biochim Biophys Acta 1274: 135–142

    Article  PubMed  Google Scholar 

  • Bricker TM and Frankel LK (1998) The structure and function of the 33 kDa extrinsic protein of photosystem II: a critical assessment. Photosynth Res 56: 157–173

    Article  CAS  Google Scholar 

  • Bricker TM (1992) Oxygen evolution in the absence of the 33-kilodalton manganese-stabilizing protein. Biochemistry 31: 4623–4628

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL and Sherman LA (1991) Deletion mutagenesis in Synechocystis sp. PCC6803 indicates that the Mn-stabilizing protein of photosystem II is not essential for O2 evolution. Biochemistry 30: 440–446

    Article  PubMed  CAS  Google Scholar 

  • Chivian D, Kim DE, Malmstrom L, Bradley P, Robertson T, Murphy P, Strauss, CE, Bonneau R, Rohl CA and Baker D (2003) Automated prediction of CASP-5 structures using the Robetta server. Proteins 53: 524–533

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102: 269–352

    Article  PubMed  CAS  Google Scholar 

  • De Las Rivas J, Balsera M and Barber J (2004) Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins. Trends Plant Sci 9: 18–25

    Article  PubMed  CAS  Google Scholar 

  • De Las Rivas J and Heredia P (1999) Structural predictions on the 33 kDa extrinsic protein associated to the oxygen evolving complex of photosynthetic organisms. Photosynth Res 61: 11–21

    Article  CAS  Google Scholar 

  • Dutzler R, Stetefeld J, Storici P, Capitani G, Schirmer T, Fotiadis D, Mueller D, Engel A, Kryger G, Greenblatt HM, Locher K, Grosse-Kunstleve R W, Adams P, Connolly ML, Bashford D, Caughron M, Serulneck TM, Santenelli E and Bordo D (2002) DINO: Visualizing Structural Biology. Retrieved from http://www.dino3d.org/intro.php

  • Enami I, Kamo M, Ohta H, Takahashi S, Miura T, Kusayanagi M, Tanabe S, Kamei A, Motoki A, Hirano M, Tomo T and Satoh K (1998) Intramolecular crosslinking of the extrinsic 33 kDa protein leads to loss of oxygen evolution but not its ability of binding to Photosystem II and stabilisation of the manganese cluster. J Biol Chem 273: 4629–4634

    Article  PubMed  CAS  Google Scholar 

  • Enami I, Yoshihara S, Tohri A, Okumura A, Ohta H and Shen JR (2000) Cross-reconstitution of various extrinsic proteins and photosystem II complexes from cyanobacteria, red algae and higher plants. Plant Cell Physiol 41: 1354–1364

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen evolving center. Science 303: 1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Frankel LK and Bricker TM (1995) Interaction of the 33-kDa extrinsic protein with photosystem II: identification of domains on the 33-kDa protein that are shielded from NHSbiotinylation by photosystem II. Biochemistry 34: 7492–7497

    Article  PubMed  CAS  Google Scholar 

  • Guex N and Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris EP and Barber J (1999) Revealing the structure of the oxygen evolving core dimer of PS II by cryoelectron crystallography. Nat Struct Biol 6: 560–564

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris EP, Nield J, Gerle C and Barber J (2001) Three dimensional structure of photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 135: 262–269

    Article  PubMed  CAS  Google Scholar 

  • Heredia P and De Las Rivas J (2003) Calcium-dependent conformational change and thermal stability of the isolated PsbO protein detected by FTIR spectroscopy. Biochemistry 42: 11831–11838

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Thompson JD and Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Meth Enzymol 266: 383–402 Holm L and Sander C (1996) Mapping the protein universe. Science 273: 595-602

    Article  PubMed  CAS  Google Scholar 

  • Hutchison RS, Betts SD, Yocum CF and Barry BA (1998) Conformational changes in the extrinsic manganese stabilizing protein can occur upon binding to the photosystem II reaction center: an isotope editing and FT-IR study. Biochemistry 37: 5643–5653

    Article  PubMed  CAS  Google Scholar 

  • Jones S and Thornton JM (1996) Principles of protein-protein interactions derived from structural studies. Proc Natl Acad Sci USA 93: 13–20

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W and Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N and Shen JR (2003) Crystal structure of oxygenevolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci USA 100: 98–102

    Article  PubMed  CAS  Google Scholar 

  • Karplus K, Barrett C and Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856

    Article  PubMed  CAS  Google Scholar 

  • Komenda J and Barber J (1995) Comparison of psbO and psbH deletion mutants of Synechocystis PCC6803 indicates that degradation of D1 protein is regulated by the QB site and is dependent on protein synthesis. Biochemistry 34: 9625–9631

    Article  PubMed  CAS  Google Scholar 

  • Kruk J, Burda K, Jemiola-Rzeminska M and Strzalka K (2003) The 33 kDa protein of photosystem II is a low-affinity calcium-and lanthanide-binding protein. Biochemistry 42: 14862–14867

    Article  PubMed  CAS  Google Scholar 

  • Mayes SR, Cook KM, Self SJ, Zhang ZH and Barber J (1991) Deletion of the gene encoding the PS II 33 kDa protein from Synechocystis PCC6803 does not inactivate water-splitting but increases vulnerability to photoinhibition. Biochim Biophys Acta 1060: 1–12

    CAS  Google Scholar 

  • Mayfield SP, Bennoun P and Rochaix J-D (1987) Expression of the nuclear encoded OEE1 protein is required for oxygen evolution and stability of Photosystem II particles in Chlamydomonas reinhardtii. EMBO J 6: 313–318

    PubMed  CAS  Google Scholar 

  • McDonald IK and Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238: 777–793

    Article  PubMed  CAS  Google Scholar 

  • MiyaoMand Murata N (1984) Role of the 33 kDa polypeptide in preserving Mn in the photosynthetic oxygen-evolution system and its replacement by chloride ions. FEBS Lett 170: 350–354

    Article  Google Scholar 

  • Motoki A, Shimazu T, Hirano M and Katoh S (1998) Two regions of the Mn-stabilizing protein from Synechococcus elongatus that are involved in binding to photosystem II complexes. Biochim Biophys Acta 1365: 492–502

    Article  PubMed  CAS  Google Scholar 

  • Motoki A, Usui M, Shimazu T, Hirano M and Katoh S (2002) A domain of the manganese-stabilising protein of PS II-identification of domains cross-linked by 1-ethyl-3-(3-dimethyl-amino)propyl carbo diimide. Biochemistry 31: 5616–5620

    Google Scholar 

  • Murata N and Miyao M (1985) Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex. Trends Biochem Sci 10: 122–124

    Article  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, YamadaMand Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10: 137–145

    Article  PubMed  CAS  Google Scholar 

  • Notredame C, Higgins DG and Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205–217

    Article  PubMed  CAS  Google Scholar 

  • Ono T and Inoue Y (1983) Mn-preserving extraction of 33, 24 and 16 kDa proteins from O2 evolving PS II particles by divalent salt washing. FEBS Lett 164: 255–260

    Article  CAS  Google Scholar 

  • Pearl FMG, Lee D, Bray JE, Sillitoe I, Todd AE, Harrison AP, Thornton JM and Orengo CA (2000) Assigning genomic sequences to CATH. Nucleic Acids Res 28: 277–282

    Article  PubMed  CAS  Google Scholar 

  • Philbrick JB, Diner BA and Zilinskas BA (1991) Construction and characterization of cyanobacterial mutants lacking the manganese-stabilizing polypeptide of photosystem II. J Biol Chem 266: 13370–13376

    PubMed  CAS  Google Scholar 

  • Popelkova H, Wyman AJ and Yocum CF (2003) Amino acid sequences and solution structures of manganese stabilizing protein that affect reconstitution of Photosystem II activity. Photosynth Res 77: 21–34

    Article  PubMed  CAS  Google Scholar 

  • Rhee K-H, Morris EP, Zheleva D, Hankamer B, K?hlbrandt W and Barber J (1997) Two dimensional structure of plant photosystem II at 8 Å resolution. Nature 389: 522–526

    Article  CAS  Google Scholar 

  • Rhee K-H, Morris EP, Barber J and K?hlbrandt W (1998) Three dimensional structure of the PS II reaction centre at 8 ?. Nature 396: 283–286

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW and Faller P (2001) The heart of photosynthesis in glorious 3D. Trends Biochem Sci 26: 341–344

    Article  PubMed  CAS  Google Scholar 

  • Sanner MF, Olson AJ and Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. biopolymers 38: 305–320

    Article  PubMed  CAS  Google Scholar 

  • Sayle R and Milner-White EJ (1995) RasMol: biomolecular graphics for all. Trends Biochem Sci 20: 374

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N and Peitsch MC (2003) SWISSMODEL: an automated protein homology-modeling server. Nucleic Acids Res 31: 3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1277: 35–60

    Article  PubMed  Google Scholar 

  • Shen JR, Burnap RL and Inoue Y (1995) An independent role of cytochrome c-550 in cyanobacterial photosystem II as revealed by double-deletion mutagenesis of the psbO and psbV genes in Synechocystis sp. PCC 6803. Biochemistry 34: 12661–12668

    Article  PubMed  CAS  Google Scholar 

  • Shutova T, Irrgang K, Klimov VV and Renger G (2000) Is the manganese stabilizing 33 kDa protein of photosystem II attaining a 'natively unfolded' or 'molten globule' structure in solution? FEBS Lett 467: 137–140

    Article  PubMed  CAS  Google Scholar 

  • Shutova T, Deikus G, Irrgang KD, Klimov VV and Renger G (2001) Origin and properties of fluorescence emission from the extrinsic 33 kDa manganese stabilizing protein of higher plant water oxidizing complex. Biochim Biophys Acta 1504: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Spetae C, Hundal T, Lundin B, Heddad M, Adamska I and Andersson B (2004). Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 101: 1409–1414

    Article  CAS  Google Scholar 

  • Svensson B, Tiede DM, Nelson DR and Barry BA (2004) Structural studies of the manganese stabilizing subunit in photosystem II. Biophys J 86: 1807–1812

    Article  PubMed  CAS  Google Scholar 

  • Sverdrup HV, Johnson MW and Fleming RH (1942) The Oceans. Their Physics, Chemistry and Biology. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Tohri A, Suzuki T, Okuyama S, Kamino K, Motoki A, Hirano M, Ohta H, Shen JR, Yamamoto Y and Enami I (2002) Comparison of the structure of the extrinsic 33 kDa protein from different organisms. Plant Cell Physiol 43: 429–439

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Ishikawa Y, Nakatani E, Yamada M, Zhang H and Wydrzynski T (1998) Role of an extrinsic 33 kD a protein of photosystem II in the turnover of the reaction center-binding protein D1 during photoinhibition. Biochemistry 37: 1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001). Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 ? resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Barber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Las Rivas, J., Barber, J. Analysis of the Structure of the PsbO Protein and its Implications. Photosynthesis Research 81, 329–343 (2004). https://doi.org/10.1023/B:PRES.0000036889.44048.e4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000036889.44048.e4

Navigation