Skip to main content
Log in

Design and Evaluation of an Emulsion Vehicle for Paclitaxel. I. Physicochemical Properties and Plasma Stability

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The current formulation of paclitaxel contains ethanol and Cremophor EL and has been reported to cause serious adverse reactions. The purpose of the present work was to develop an improved emulsion vehicle for paclitaxel and to study the physicochemical properties of such a system.

Methods. Emulsions were prepared by either microfluidization or sonication method and the droplet size characterized by dynamic light scattering and light microscopy.

Results. Stable emulsions could be made using mixtures of lecithin/sodium deoxycholate as the emulsifiers. The formulation was further improved by using a combination of free acid and the sodium salt. Paclitaxel could be loaded into the emulsions at 2.5 mg/ml without the formation of drug crystals. While these emulsions were stable on storage, they flocculated when mixed with plasma. Steric stabilization of the emulsion droplets with poloxamer 188 increased the stability of the emulsions in plasma but promoted the crystallization of paclitaxel. The crystallization tendency could be reduced by using PEG5000PE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[poly (ethylene glycol) 5000]), a less water-soluble stabilizer

Conclusions. Emulsions with good stability characteristics containing 2.5 mg/ml paclitaxel could be made using bile salt/acid and lecithin, and the excellent stability of these emulsions in plasma was achieved by steric stabilization using PEG5000PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. K. Rowinsky and R. C. Donehower. Paclitaxel (taxol). N. Engl. J. Med. 332:1004-1014 (1995).

    Google Scholar 

  2. D. B. Wilson, T. M. Beck, and C. A. Gundlach. Paclitaxel formulation as a cause of ethanol intoxication. Ann. Pharmacother. 31:873-875 (1997).

    Google Scholar 

  3. R. Weiss, R. C. Donehower, P. H. Wiernik, T. Ohnuma, R. A. Gralla, D. L. Trump, J. R. Baker, D. A. VanEcho, D. D. Von-Hoff, and B. Leyland-Jones. Hypersensitivity reactions from taxol. J. Clin. Oncol. 8:1263-1268 (1990).

    Google Scholar 

  4. H. Chen, Z. Zhang, C. McNulty, C. Olbert, H. Yoon, J. Lee, S. Kim, M. Seo, H. Oh, A. Lemmo, S. Ellis, and K. Heimlich. A high-throughput combinatorial approach for the discovery of a Cremophor EL-free paclitaxel formulation. Pharm. Res. 20:1302-1308 (2003).

    Google Scholar 

  5. H. Alkan-Onyuksel, S. Ramakrishnan, H. Chai, and J. M. Pezzuto. A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm. Res. 11:206-212 (1994).

    Google Scholar 

  6. A. Krishnadas, I. Rubinstein, and H. Onyuksel. Sterically stabilized phospholipid mixed micelles: In vitro evaluation as a novel carrier for water-insoluble drugs. Pharm. Res. 20:297-302 (2003).

    Google Scholar 

  7. X. Zhang, J. K. Jackson, and H. M. Burt. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int. J. Pharm. 132:195-206 (1996).

    Google Scholar 

  8. A. Sharma, R. M. Straubinger, I. Ojima, and R. J. Bernacki. Antitumor efficacy of taxane liposomes on a human ovarian tumor xenograft in nude athymic mice. J. Pharm. Sci. 84:1404 (1995).

    Google Scholar 

  9. R. Perez-Soler and Y. Zou. Liposomes as carriers of lipophilic antitumor agents. In D. D. Lasicand D. Papahadjopoulos (eds.), Medical Applications of Liposomes, Elsevier Science B. V., Amsterdam, 1998.

    Google Scholar 

  10. M. Immordino, P. Brusa, S. Arpicco, B. Stella, F. Dosio, and L. Cattel. Preparation, characterization, cytotoxicity and pharmaco-kinetics of liposomes containing docetaxel. J. Control. Release 91:417-429 (2003).

    Google Scholar 

  11. P. Kan, Z. B. Chen, C. J. Lee, and I. M. Chu. Development of nonionic surfactant/phospholipid O/W emulsion as a paclitaxel delivery system. J. Control. Release 58:271-278 (1999).

    Google Scholar 

  12. B. B. Lundberg. A submicron lipid emulsion coated with amphiphathic polyethylene glycol for parenteral administration of paclitaxel (taxol). J. Pharm. Pharmaco. 49:16-21 (1997).

    Google Scholar 

  13. B. D. Tarr, T. G. Sambandan, and S. H. Yalkowsky. A new parenteral emulsion for the administration of taxol. Pharm. Res. 4:162-165 (1987).

    Google Scholar 

  14. D. Rodrigues, C. Covolan, S. Coradi, R. Barboza, and R. Maranhao. Use of a cholesterolrich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J. Pharm. Pharmacol. 54:765-772 (2002).

    Google Scholar 

  15. P. Simamora, R. M. Dannenfelser, S. E. Tabibi, and S. H. Yalkowsky. Emulsion formulations for intravenous administration of paclitaxel. PDA J. Pharm. Sci. Technol. 52:170-172 (1998).

    Google Scholar 

  16. L. He, G. Wang, and Q. Zhang. An alternative paclitaxel micro-emulsion formulation: hypersensitivity evaluation and pharmaco-kinetic profile. Int. J. Pharm. 250:45-50 (2003).

    Google Scholar 

  17. P. P. Constantinides, K. J. Lambert, A. K. Tustian, B. Schneider, S. Lalji, W. W. Ma, B. Wentzel, D. Kessler, D. Worah, and S. C. Quay. Formulation development and antitumour activity of a filter-sterilizable emulsion of paclitaxel. Pharm. Res. 17:175-182 (2000).

    Google Scholar 

  18. S. S. Davis. and J. Han. Taxol emulsion, PCT Int. Appl., WO 99/04787, Danbiosyst UK Limited, UK, 1999.

    Google Scholar 

  19. S. Benita and M. Y. Levy. Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physico-chemical characterization. J. Pharm. Sci. 82:1069-1079 (1993).

    Google Scholar 

  20. C. Washington. The electrokinetic properties of phospholipid stabilized fat emulsions.6. Zeta-potentials of Intralipid 20% in TPN mixtures. Int. J. Pharm. 87:167-174 (1992).

    Google Scholar 

  21. D. P. Cistola, J. A. Hamilton, D. Jackson, and D. M. Small. Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochem. 27:1881-1888 (1988).

    Google Scholar 

  22. D. F. Driscoll, F. Etzler, T. A. Barber, J. Nehne, W. Niemann, and B. R. Bistrian. Physicochemical assessments of parenteral lipid emulsions: light obscuration versus laser diffraction. Int. J. Pharm. 219:21-37 (2001).

    Google Scholar 

  23. L. Illum, S. S. Davis, C. G. Wilson, N. W. Thomas, M. Frier, and J. G. Hardy. Blood clearance and organ deposition of intravenously administered colloidal particles-the effects of particle size, nature and shape. Int. J. Pharm. 12:135-146 (1982).

    Google Scholar 

  24. R. J. Hunter. Foundations of Colloid Science, Oxford University Press, New York, 1986.

    Google Scholar 

  25. M. Malmsten and J. M. VanAlstine. Adsorption of poly(ethylene glycol) amphiphiles to form coatings which inhibit protein adsorption. J. Colloid Interface Sci. 177:502-512 (1996).

    Google Scholar 

  26. W. Lin, M. C. Garnett, M. C. Davies, F. Bignotti, P. Ferruti, S. S. Davis, and L. Illum. Preparation of surface-modified albumin nanospheres. Biomater. 18:559-565 (1997).

    Google Scholar 

  27. W. Lin, M. C. Garnett, E. Schacht, S. S. Davis, and L. Illum. Preparation and in vitro characterization of HSA-mPEG nano-particles. Int. J. Pharm. 189:161-170 (1999).

    Google Scholar 

  28. K. L. Prime and G. M. Whitesides. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J. Am. Chem. Soc. 115: 10714-10721 (1993).

    Google Scholar 

  29. P. Alexandridis and T. A. Hatton. Poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics and modeling. Colloid Surface A 96:1-46 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Davis, S.S., Papandreou, C. et al. Design and Evaluation of an Emulsion Vehicle for Paclitaxel. I. Physicochemical Properties and Plasma Stability. Pharm Res 21, 1573–1580 (2004). https://doi.org/10.1023/B:PHAM.0000041451.70367.21

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000041451.70367.21

Navigation