Skip to main content
Log in

Temperature- and pH-Induced Multiple Partially Unfolded States of Recombinant Human Interferon-α2a: Possible Implications in Protein Stability

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To study the effect of solution conditions on the structural conformation of recombinant human interferon-α2a (IFNα2a) to investigate its tendency to form partially unfolded intermediates.

Methods. The structural properties of IFNα2a were studied at various pH values (2.0-7.4) and temperatures (5°C-80°C) using Trp fluorescence emission, fluorescence quenching, near- and far-UV circular dichroism (CD) spectroscopy, and DSC.

Results. Fluorescence intensity measurements as a function of temperature indicated the onset of the thermal unfolding of IFNα2a, denoted by Td, around 60°C above pH 4.0. Td was not observed at pH 3.5 and below. Acrylamide and iodide quenching studies indicated partial unfolding of protein with decrease in pH and with increase in temperature up to 50°C. Near-UV CD studies indicated a significant loss in the tertiary structure of protein on increase in temperature from 15°C to 50°C at all solution pHs. DSC scans supported results obtained from fluorescence and CD studies at pH 4.0 and below. DSC, however, was insensitive to changes that occurred at moderate temperatures at pH 5.0 and 7.4.

Conclusions. IFNα2a has a tendency to acquire multiple partially unfolded states with structural conformations sensitive to solution pH and temperature. These states were formed at moderate temperatures, and it is speculated that these partially unfolded states could play an important role in the aggregation of proteins during the long-term storage of aqueous protein formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. Pharm. Res. 6:903-918 (1989).

    Google Scholar 

  2. T. Arakawa, S. Prestrelski, W. C. Kenney, and J. F. Carpenter. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 10:1-28 (1993).

    Google Scholar 

  3. W. Wang. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185:129-188 (1999).

    Google Scholar 

  4. O. B. Ptitsyn. Molten globule and protein folding. Adv. Prot. Chem. 47:83-229 (1995).

    Google Scholar 

  5. A. L. Fink. Compact intermediate states in protein folding. Annu. Rev. Biophys. Biomol. Struct. 24:495-522 (1995).

    Google Scholar 

  6. K. Kuwajima. The molten globule as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6:87-103 (1989).

    Google Scholar 

  7. C. M. Dobson. Unfolded proteins, compact states and molten globules. Curr. Opin. Struct. Biol. 2:6-12 (1992).

    Google Scholar 

  8. V. N. Uversky, N. V. Narizhneva, S. O. Kirschstein, S. Winter, and G. Lober. Conformational transitions provoked by organic solvents in β-lactoglobulin: can a molten globule like intermediate be induced by the decrease in dielectric constant. Folding Design 2:163-172 (1997).

    Google Scholar 

  9. K. S. Vassilenko and V. N. Uversky. Native-like secondary structure of molten globules. Biochim. Biophys. Acta 1594:168-177 (2002).

    Google Scholar 

  10. J. E. Matsuura, A. E. Morris, R. R. Ketchem, E. H. Braswell, R. Klinke, W. R. Gombotz, and R. L. Remmele, Jr. Biophysical characterization of a soluble CD40 ligand (CD154) coiled-coil trimer: Evidence of a reversible acid-denatured molten globule. Arch. Biochem. Biophys. 392:208-218 (2001).

    Google Scholar 

  11. T. Koshiba, M. Yao, Y. Kobashigawa, M. Demura, A. Nakagawa, I. Tanaka, K. Kuwajima, and K. Nitta. Structure and thermodynamics of the extraordinarily stable molten globule state of canine milk lysozyme. Biochemistry 39:3248-3257 (2000).

    Google Scholar 

  12. S. Wicar, M. G. Mulkerrin, G. Bathory, L. H. Khundkar, and B. L. Karger. Conformational changes in the reversed phase liquid chromatography of recombinant human growth hormone as a function of organic solvent: The molten globule state. Anal. Chem. 66:3908-3915 (1994).

    Google Scholar 

  13. O. B. Ptitsyn, R. H. Pain, G. B. Semisotnov, E. Zerovnik, and O. I. Razgulyaev. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262:20-24 (1990).

    Google Scholar 

  14. O. B. Ptitsyn and V. N. Uversky. The molten globule is a third thermodynamical state of protein molecules. FEBS Lett. 341:15-18 (1994).

    Google Scholar 

  15. M. Vincent. I. M. Li de la Sierra, M. N. Berberan-Santos, A. Diaz, M. Diaz, G. Padron, and J. Gallay. Time-resolved fluorescence study of human recombinant interferon a2. Association state of the protein, spatial proximity of the two tryptophan residues. Eur. J. Biochem. 210:953-962 (1992).

    Google Scholar 

  16. I. V. Dudich, E. I. Dudich, D. P. Kulevatskii, and V. P. Zav'yalov. Fluorescence polarization, circular dichroism and differential microcalorimetry study of structural features of human recombinant leukocyte interferon A. Mol. Biol. 25:1061-1070 (1991).

    Google Scholar 

  17. S. I. Borukhov and A. Y. Strongin. The intrinsic fluorescence of the recombinant human leukocyte interferon-αA and fibroblast interferon β1. Biochem. Biophys. Res. Commun. 169:282-288 (1990).

    Google Scholar 

  18. J. M. Davis, M. A. Narachi, H. L. Levine, N. K. Alton, and T. Arakawa. Conformation and stability of two recombinant human interferon-a analogs. Int. J. Pept. Prot. Res. 29:685-691 (1987).

    Google Scholar 

  19. M. Haria and P. Benfield. Interferon-α-2a: A review of its pharmacological properties and therapeutic use in the management of viral hepatitis. Drugs 50:873-896 (1995).

    Google Scholar 

  20. S. Baron, D. H. Coppenhaver, F. Dianzani, W. R. Fleischmann, Jr., T. K. Hughes, D. W. Niesel, G. J. Stanton, and S. K. Tyring. Introduction to the interferon system. In S. Baron, D. H. Coppenhaver, F. Dianzani, W. R. Fleischmann, Jr., T. K. Hughes, D. W. Niesel, G. J. Stanton, and S. K. Tyring (eds.), Interferon: Principles and Medical Applications, University of Texas Medical Branch, Galveston, Texas, 1992, pp. 1-15.

    Google Scholar 

  21. W. Klaus, B. Gsell, A. M. Labhardt, B. Wipf, and H. Senn. The three-dimensional high resolution structure of human interferon α-2a determined by heteronuclear NMR spectroscopy in solution. J. Mol. Biol. 274:661-675 (1997).

    Google Scholar 

  22. D. H. Tallmadge, J. S. Huebner, and R. F. Borkman. Acrylamide quenching of tryptophan photochemistry and photophysics. Photochem. Photobiol. 49:381-386 (1989).

    Google Scholar 

  23. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, Plenum, New York, 1982.

    Google Scholar 

  24. M. R. Eftink and C. A. Ghiron. Fluorescence quenching studies with proteins. Anal. Biochem. 114:199-227 (1981).

    Google Scholar 

  25. M. R. Eftink and C. A. Ghiron. Dynamics of a protein matrix revealed by fluorescence quenching. Proc. Natl. Acad. Sci. USA 72:3290-3294 (1975).

    Google Scholar 

  26. S. S. Lehrer. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254-3263 (1971).

    Google Scholar 

  27. M. R. Eftink. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys. J. 66:482-501 (1994).

    Google Scholar 

  28. Software downloaded from website http://www2.umdnj.edu/cdrwjweb.

  29. N. Sreerama and R. W. Woody. Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods. J. Mol. Biol. 242:497-507 (1994).

    Google Scholar 

  30. E. H. Strickland. Aromatic contributions to circular dichroism spectra of proteins. CRC Crit. Rev. Biochem. 2:113-175 (1974).

    Google Scholar 

  31. R. H. I. Pain (ed.), Mechanisms of Protein Folding, Oxford University Press, Oxford, 2000.

    Google Scholar 

  32. M. G. Mulkerrin and R. Wetzel. pH dependence of the reversible and irreversible thermal denaturation of γ interferons. Biochemistry 28:6556-6561 (1989).

    Google Scholar 

  33. R. L. Remmele, Jr., N. C. Nightlinger, S. Srinivasan, and W. R. Gombotz. Interleukin-1 receptor (IL-1R) liquid formulation development using differential scanning calorimetry. Pharm. Res. 15:200-209 (1998).

    Google Scholar 

  34. R. L. Remmele, Jr., S. D. Bhat, D. H. Phan, and W. R. Gombotz. Minimization of recombinant human Flt3 ligand aggregation at the Tm plateau: A matter of thermal reversibility. Biochemistry 38:5241-5247 (1999).

    Google Scholar 

  35. A. Braun. and J. Alsenz. Development and use of enzyme-linked immunosorbent assays (ELISA) for the detection of protein aggregates in interferon alpha (IFN-α) formulations. Pharm. Res. 14:1394-1400 (1997).

    Google Scholar 

  36. G. Gunter, S. Del Terzo, and S. K. Kumar. Stabilized interferon alpha solutions, US Patent 5,762,923. (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra S. Kalonia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V.K., Kalonia, D.S. Temperature- and pH-Induced Multiple Partially Unfolded States of Recombinant Human Interferon-α2a: Possible Implications in Protein Stability. Pharm Res 20, 1721–1729 (2003). https://doi.org/10.1023/B:PHAM.0000003367.62900.0f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000003367.62900.0f

Navigation