Skip to main content
Log in

The Effect of Cauda Equina Constriction on Nitric Oxide Synthase Activity

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nitric oxide synthase (NOS) activity was studied in the gray and white matter regions of the spinal cord 2 and 5 days after multiple cauda equina constrictions of the central processes of L7-Co5 dorsal root ganglia neurons. The results show considerable differences in enzyme activity in the thoracic, upper lumbar, lower lumbar, and sacral segments. Increased NOS activity was observed at 2 days after multiple cauda equina constrictions in the dorsal, lateral, and ventral columns of the lower lumbar segments and in the ventral column of the upper lumbar segments. The values returned to control levels within 5 postconstriction days. In the lateral columns of thoracic segments taken 2 and 5 days after surgery, NOS activity was enhanced by 54% and 55% and in the upper lumbar segments by 130% and 163%, respectively. Multiple cauda equina constrictions performed surgically for 2 and 5 days caused a significant increase in NOS activity predominantly in the gray matter regions of thoracic segments. A quite different response was found 5 days postconstriction in the upper lumbar segments, where the enzyme activity was significantly decreased in the dorsal horn, intermediate zone, and ventral horn. No such extreme differences could be seen in the lower lumbar segments, where NOS activity was significantly enhanced only in the ventral horn. The data correspond with a higher number of NOS immunoreactive somata, quantitatively evaluated in the ventral horn of the lower lumbar segments at 5 days after multiple cauda equina constrictions. While the great region-dependent heterogeneity in NOS activity seen 2 and 5 days after multiple cauda equina constrictions is quite apparent and suggestive of an active role played by nitric oxide in neuroprotective or neurotoxic processes occurring in the gray and white matter of the spinal cord, the extent of damage or the degree of neuroprotection caused by nitric oxide in compartmentalized gray and white matter in this experimental paradigm would be possible only using longer postconstriction periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Aho, A. J., Auranen, A., and Personen, K. 1969. Analysis of cauda equina symptoms in patients with lumbar disc prolapse. Acta Chir. Scand. 135:413–420.

    Google Scholar 

  2. Floman, Y., Wiesel, S. W., and Rothman, R. H. 1980. Cauda equina syndrome presenting as a lumbar disk. Clin. Orthop. Rel. Res. 147:234–237.

    Google Scholar 

  3. Rhein, F., Audic, B., Bor, Y., and Perrigot, M. 1985. FrÉtude clinique de la récuperation des syndromes de la queue de cheval par hernie discale: Ápropos de 65 cas. Ann. Readapt. Med. Phys. 28:153–168.

    Google Scholar 

  4. Kostuik, J. P., Harrington, I., Alexander, D., Rand, W., and Evans, D. 1986. Cauda equina syndrome and lumbar disc herniation. J. Bone Joint Surg. 68A:386–391.

    Google Scholar 

  5. Humphrey, P. R. D. 1990. Degenerative and inflammatory diseases of the spine: Neurological consequences. Curr. Opin. Neurol. Neurosurg. 3:576–580.

    Google Scholar 

  6. Byrne, T. N. 1993. Disorders of the spinal cord and cauda equina [Editorial overview]. Curr. Opin. Neurol. Neurosurg. 6:545–548.

    Google Scholar 

  7. Jaradeh, S. 1993. Cauda equina syndrome: A neurologist's perspective. Region. Anesth. 18:473–480.

    Google Scholar 

  8. Shapiro, S. 1993. Cauda equina syndrome secondary to lumbar disc herniation. Neurosurgery 32:743–747.

    Google Scholar 

  9. Leroi, A. M., Berkelmans, I., Rabehenoina, C., Creissard, P., and Weber, J. 1994. —Résultats de la prise en charge thérapeutique des troubles vésico-sphinctériens et ano-rectaux de 20 patients ayant un syndrome de la queue de cheval. Neurochirurgie (Paris) 40:301–306.

    Google Scholar 

  10. Drábek, P. 1995. <foreign language="other">Topografie caudae equinae: Diagnostické hledisko. Čes. a Slov. Neurol. Neurochir. 58:263–265.

    Google Scholar 

  11. Orendáčová, J., Čížková, D., Kafka, J., Lukáčová, N., Maršala, M., Šulla, I., Maršala, J., and Katsube, N. 2001. Cauda equina syndrome. Prog. Neurobiol. 64:613–637.

    Google Scholar 

  12. Kawakami, M. and Tamaki, T. 1992. Morphologic and quantitative changes in neurotransmitters in the lumbar spinal cord after acute or chronic mechanical compression of the cauda equina. Spine 17:13–17.

    Google Scholar 

  13. Iwamoto, H., Kuwahara, H., Matsuda, H., Noriage, A., and Yamano, Y. 1995. Production of chronic compression of the cauda equina in rats for use in studies of lumbar spinal canal stenosis. Spine 20:2750–2757.

    Google Scholar 

  14. Sayegh, F. E., Kapetanos, G. A., Symeonides, P. P., Anogiannakis, G., and Madentzidis, M. 1997. Functional outcome after experimental cauda equina compression. J. Bone Joint Surg. 79:670–674.

    Google Scholar 

  15. Yamamoto, K., Ishikawa, T., Takenobu, Y., Katsube, N., and Marsala, M. 1997. OP-1206 a prostaglandin E1 derivate ameliorates motor/sensory dysfunction and improve local spinal cord blood flow in rat spinal canal stenosis model. Soc. Neurosci. 23:923–3.

    Google Scholar 

  16. Yamaguchi, K., Murakami, M., Takahashi, K., Moriya, H., Tatsuoka, H., and Chiba, T. 1999. Behavioral and morphologic studies of the chronically compressed cauda equina: Experimental model of lumbar spinal stenosis in the rat. Spine 24:845–851.

    Google Scholar 

  17. Delamarter, R. B., Bohlman, H. H., Bodner, D., and Biro, C. 1990. Neurologic function after experimental cauda equina compression: Cystometrograms versus cortical-evoked potentials. Spine 15:864–870.

    Google Scholar 

  18. Konno, S., Yabuki, S., Sato, K., Olmarker, K., and Kikuchi, S. 1995. A model for acute, chronic and delayed graded compression of the dog cauda equina: Presentation of the gross, microscopic and vascular anatomy of the dog cauda equina and accuracy in pressure transmission of the compression model. Spine 20:2758–2764.

    Google Scholar 

  19. Mao, G. P., Konno, S., Arai, I., Olmarker, K., and Kukuchi, S. 1998. Chronic double-level cauda equina compression: An experimental study on the dog cauda equina with analyses of nerve conduction velocity. Spine 23:1641–1644.

    Google Scholar 

  20. Sato, K., Konno, S., Yabuki. S., Mao, G. P., Olmarker, K., and Kikuchi, S. 1995. A model for acute, chronic, and delayed graded compression of the dog cauda equina: Neurophysiologic and histologic changes induced by acute, graded compression. Spine 22:2386–2391.

    Google Scholar 

  21. Yoshizawa, H., Kobayashi, S., and Morita, T. 1995. Chronic nerve root compression: Pathophysiologic mechanism of nerve root dysfunction. Spine 20:397–407.

    Google Scholar 

  22. Sato, K. and Kikuchi, S. 1997. Clinical analysis of two-level compression of the cauda equina and the nerve roots in lumbar spinal canal stenosis. Spine 22:1898–1904.

    Google Scholar 

  23. Olmarker, K., Rydevik, B., and Holm, S. 1989. Edema formation in spinal nerve roots induced by experimental, graded compression: An experimental study on the pig cauda equina with special reference to differences in effects between rapid and slow onset of compression. Spine 14:569–573.

    Google Scholar 

  24. Olmarker, K., Rydevik, B., Holm, S., and Bagge, U. 1989. Effects of experimental graded compression on blood flow in spinal nerve roots: A vital microscopic study on the porcine cauda equina. J. Orthop. Res. 7:817–823.

    Google Scholar 

  25. Pedowitz, R. A., Rydevik, B. L., Swenson, M. R., Hargens, A. R., Massie, J. B., Myers, R. R., and Garfin, S. R. 1989. Differential recovery of motor and sensory nerve root conduction following 2 or 4 hours of graded compression of the pig cauda equina, Read at the Annual Meeting of the International Society for the Study of the Lumbar Spine, Kyoto, Japan, May 17.

  26. Olmarker, K., Holm, S., and Rydevik, B. 1990. More pronounced effects of double level compression than single level compression on impulse propagation in the porcine cauda equina, Presented to the International Society for the Study of the Lumbar Spine, Boston.

  27. Olmarker, K., Rydevik, B., Hansson, T., and Holm, S. 1990. Compression-induced changes of the nutritional supply to the porcine cauda equina. J. Spinal Disord. 3:25–29.

    Google Scholar 

  28. Garfin, S. R., Cohen, M. S., Massie, J. B., Abitbol, J. J., Swenson, M. R., Myers, R. R., and Rydevik, B. L. 1990. Nerve-roots of the cauda equina: The effect of hypotension and acute graded compression on function. J. Bone Joint Surg. 72:1185–1192.

    Google Scholar 

  29. Olmarker, K., Takahashi, K., and Rydevik, B. 1992. Anatomy and compression: Pathophysiology of the nerve roots of the lumbar spine. Pages 77–90, in Anderson, G. B. J. and MacNeill, T. (eds.), Spinal Stenosis, Mosby, St. Louis.

    Google Scholar 

  30. Rydevik, B. 1993. Neurophysiology of cauda equina compression. Acta Orthop. Scand. (Suppl. 251) 64:52–55.

    Google Scholar 

  31. Cornefjord, M., Olmarker, K., Rydevik, B., and Nordborg. C. 1996. Mechanical and biochemical injury of spinal nerve roots: A morphological and neurophysiological study. Eur. Spine J. 5:187–192.

    Google Scholar 

  32. Cornefjord., M., Sato, K., Olmarker, K., Rydevik, B., and Nordborg, C. 1997. A model for chronic nerve root compression studies: Presentation of a porcine model for controlled, slow-onset compression with analyses of anatomic aspects, compression onset rate, and morphologic and neurophysiologic effects. Spine 22:946–957.

    Google Scholar 

  33. Maršala, J., Šulla, I., Jalč, P., and Orendáčová, J. 1995. Multiple protracted cauda equina constrictions cause deep derangement in the lumbosacral spinal cord circuitry in the dog. Neurosci. Lett. 193:97–100.

    Google Scholar 

  34. Huang, E. P. 1997. Synaptic plasticity: A role for nitric oxide in LTP. Curr. Biol. 7:R141–R143.

    Google Scholar 

  35. Callsen-Cencic, P., Hoheisel, U., Kaske, A., Mense, S., and Tenschert, S. 1999. The controversy about spinal neuronal nitric oxide synthase: Under which conditions is it up-or downregulated? Cell Tissue Res. 295:183–194.

    Google Scholar 

  36. Keilhoff, G., Fansa, H., and Wolf, G. 2002. Neuronal nitric oxide synthase is the dominant nitric oxide supplier for the survival of dorsal root ganglia after peripheral nerve axotomy. J. Chem. Neuroanat. 24:181–187.

    Google Scholar 

  37. Norris, P. J., Faull, R. L., and Emson, P. C. 1996. Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer's disease brains. Brain Res. Mol. Brain Res. 41:36–49.

    Google Scholar 

  38. Vodovotz, Y., Lucia, M. S., Flanders, K. C., Chesler, L., Xie, Q. W., Smith, T. W., Weidner, J., Mumford, R., Webber, R., Nathan, C., Roberts, A. B., Lippa, C. F., and Sporn, M. B. 1996. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J. Exp. Med. 184:1425–1433.

    Google Scholar 

  39. Barger, S. W. and Harmon, A. D. 1997. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388:878–881.

    Google Scholar 

  40. Meller, S. T., Pechman, P. S., Gebhart, G. F., and Maves, T. J. 1992. Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience 50:7–10.

    Google Scholar 

  41. Meller, S. T., Cummings, C. P., Traub, R. J., and Gebhart, G. F. 1994. The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat. Neuroscience 60:367–374.

    Google Scholar 

  42. Wiertelak, E. P., Furness, L. E., Watkins, L. R., and Maier, S. F. 1994. Illness-induced hyperalgesia is mediated by a spinal NMDA-nitric oxide cascade. Brain Res. 664:9–16.

    Google Scholar 

  43. Salter, M., Strijbos, P. J., Neale, S., Duffy, C., Follenfant, R. L., and Garthwaite, J. 1996. The nitric oxide-cyclic GMP pathway is required for nociceptive signalling at specific loci within the somatosensory pathway. Neuroscience 73:649–655.

    Google Scholar 

  44. Maršala, J., Vanický, I., Maršala, M., Jalč, P., Orendáčová, J., and Taira, Y. 1998. Reduced nicotinamide adenine dinucleotide phosphate diaphorase in the spinal cord of dogs. Neuroscience 85:847–862.

    Google Scholar 

  45. Maršala, J., Maršala, M., Vanický, I., and Taira, Y. 1999. Localization of NADPHd exhibiting neurons in the spinal cord of the rabbit. J. Comp. Neurol. 406:263–284.

    Google Scholar 

  46. Orendáčová, J., Maršala, M., Šulla, I., Kafka, J., Jalč, P., Čížková, D., Taira, Y., and Maršala, J. 2000. Incipient cauda equina syndrome as a model of somatovisceral pain in dogs: Spinal cord structures involved as revealed by the expression of c-fos and NADPH diaphorase activity. Neuroscience 95:543–557.

    Google Scholar 

  47. Orendáčová, J., Maršala, M., Čížková, D., Kafka, J., Račeková, E., šulla, I., Vanický, I., and Maršala, J. 2001. Fos protein expression in sacral spinal cord in relation to early phase of cauda equina syndrome in dogs. Cell. Mol. Neurobiol. 21:413–419.

    Google Scholar 

  48. Lukáčová, N., Čížková, D., Maršala, M., Lukáč, I., and Maršala, J. 2002. The regional distribution of nitric oxide synthase activity in the spinal cord of the dog. Brain Res. Bull. 58:173–178.

    Google Scholar 

  49. Hoheisel, U., Kaske, A., Reinert, A., and Mense, S. 1997. Frequency-dependent expression of diaphorase staining and nNOS-immunoreactivity in rat dorsal horn neurones following C-fibre stimulation. Neurosci. Lett. 227:181–184.

    Google Scholar 

  50. Kaske, A., Klimaschewski L., Mense S. 1998. Stimulation of C-fibres but not A-fibres induces an increase in the expression of nNOS-mRNA, in rat dorsal horn neurons. Eur. J. Physiol. (Pflügers Archiv.) 435(Suppl):R:156.

    Google Scholar 

  51. Onozawa, T., Atsuta, Y., Sato, M., Ikawa, M., Tsunekawa, H., and Feng, X. 2003. Nitric oxide induced ectopic firing in a lumbar nerve root with cauda equina compression. Clin. Orthop. 408:167–173.

    Google Scholar 

  52. Bredt, D. S. and Snyder, S. H. 1990. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87:682–685.

    Google Scholar 

  53. Strosznajder, J. and Chalimoniuk, M. 1996. Biphasic enhancement of nitric oxide synthase activity and cGMP level following brain ischemia in gerbils. Acta Neurobiol. Exp. (Warsz.) 56:71–81.

    Google Scholar 

  54. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  55. Bredt, D. S., Hwang, P. M., and Snyder, S. H. 1990. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    Google Scholar 

  56. Herbison, A. E., Simonian, S. X., Norris, P. J., and Emson, P. C. 1996. Relationship of neuronal nitric oxide immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J. Neuroendocrinol. 8:73–82.

    Google Scholar 

  57. Coderre, T. J. and Yashpal, K. 1994. Intracellular messengers contributing to persistent nociception and hyperalgesia induced by L-glutamate and substance P in the rat formalin pain model. Eur. J. Neurosci. 6:1328–1334.

    Google Scholar 

  58. Herdegen, T., Rudiger, S., Mayer, B., Bravo, R., and Zimmermann, M. 1994. Expression of nitric oxide synthase and colocalisation with Jun, Fos and Krox transcription factors in spinal cord neurons following noxious stimulation of the rat hindpaw. Mol. Brain Res. 22:245–258.

    Google Scholar 

  59. Kawabata, A., Manabe, S., Manabe, Y., and Takagi, H. 1994. Effect of topical administration of L-arginine on formalin-induced nociception in the mouse: A dual role of peripherally formed NO in pain modulation. Br. J. Pharmacol. 112:547–550.

    Google Scholar 

  60. Abbott, F. V., Franklin, K. B., and Westbrook, R. F. 1995. The formalin test: Scoring properties of the first and second phases of the pain response in rats. Pain 60:91–102.

    Google Scholar 

  61. Puig, S., and Sorkin, L. S. 1996. Formalin-evoked activity in identified primary afferent fibers: Systemic lidocaine suppresses phase-2 activity. Pain 64:345–355.

    Google Scholar 

  62. Lam, H. H., Hanley, D. F., Trapp, B. D., Saito, S., Raja, S., Dawson, T. M., and Yamaguchi, H. 1996. Induction of spinal cord neuronal nitric oxide synthase (NOS) after formalin injection in the rat hind paw. Neurosci. Lett. 210:201–204.

    Google Scholar 

  63. Roche, A. K., Cook, M., Wilcox, G. L., and Kajander, K. C. 1996. A nitric oxide synthesis inhibitor (L-NAME) reduces licking behavior and Fos-labeling in the spinal cord of rats during formalin-induced inflammation. Pain 66:331–341.

    Google Scholar 

  64. Kocher, L., Anton, F., Reeh, P. W., and Handwerker, H. O. 1987. The effect of carrageenan-induced inflammation on the sensitivity of unmyelinated skin nociceptors in the rat. Pain 29:363–373.

    Google Scholar 

  65. Diehl, B., Hoheisel, U., and Mense, S. 1993. The influence of mechanical stimuli and of acetylsalicylic acid on the discharges of slowly conducting afferent units from normal and inflamed muscle in the rat. Exp. Brain Res. 92:431–440.

    Google Scholar 

  66. Traub, R. J., Solodkin, A., and Gebhart, G. F. 1994. NADPH-diaphorase histochemistry provides evidence for a bilateral, somatotopically inappropriate response to unilateral hindpaw inflammation in the rat. Brain Res. 647:113–123.

    Google Scholar 

  67. Traub, R. J., Solodkin, A., Meller, S. T., and Gebhart, G. F. 1994. Spinal cord NADPH-diaphorase histochemical staining but not nitric oxide synthase immunoreactivity increases following carrageenan-produced hindpaw inflammation in the rat. Brain Res. 668:204–210.

    Google Scholar 

  68. Hoheisel, U., Reinert, A., and Mense, S. 1995. Changes in NADPH-diaphorase activity in the rat dorsal horn following an acute experimental myositis. Histochem. Cell. Biol. 103:459–462.

    Google Scholar 

  69. Mense, S., Hoheisel, U., and Reinert, A. 1996. Spinal neurons showing NADPH-diaphorase activity react in a different way to peripheral lessions. Ann. Anat. 178(Suppl):11–12.

    Google Scholar 

  70. Goff, J. R., Burkey, A. R., Goff, D. J., and Jasmin, L. 1998. Reorganization of the spinal dorsal horn in models of chronic pain: Correlation with behaviour. Neuroscience 82:559–574.

    Google Scholar 

  71. Häbler, H. J., Janig, W., and Koltzenburg, M. 1990. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J. Physiol. 425:545–562.

    Google Scholar 

  72. Häbler, H. J., Janig, W., and Koltzenburg, M. 1993. Receptive properties of myelinated primary afferents innervating the inflamed urinary bladder of the cat. J. Neurophysiol. 69:395–405.

    Google Scholar 

  73. Callsen-Cencic, P. and Mense, S. 1997. Altered expression of neuronal nitric oxide synthase following inflamation of the rat urinary blader. Ann. Anat. 179(Suppl):2.

    Google Scholar 

  74. Steel, J. H., Terenghi, G., Chung, J. M., Na, H. S., Carlton, S. M., and Polak, J. M. 1994. Increased nitric oxide synthase immunoreactivity in rat dorsal root ganglia in a neuropathic pain model. Neurosci. Lett. 169:81–84.

    Google Scholar 

  75. Choi, Y., Raja, S. N., Moore, L. C., and Tobin, J. R. 1996. Neuropathic pain in rats is associated with altered nitric oxide synthase activity in neural tissue. J. Neurol. Sci. 138:14–20.

    Google Scholar 

  76. Maršala, J., Maršala, M., Lukáčová, N., Ishikawa, T., and Čížková, N. 2003. Localization and distribution patterns of nicotinamide adenine dinucleotide phosphate diaphorase exhibiting axons in the white matter of the spinal cord of the rabbit. Cell. Mol. Neurobiol. 23:57–93.

    Google Scholar 

  77. Matsushita, M. and Ueyama, T. 1973. Ventral motor nucleus of the cervical enlargement in some mammals: Its specific afferents from the lower cord levels and cytoarchitecture. J. Comp. Neurol. 150:33–52.

    Google Scholar 

  78. Brown, A. G. and Fyffe, R. E. 1978. The morphology of group Ia afferent fibre collaterals in the spinal cord of the cat. J. Physiol. 274:111–127.

    Google Scholar 

  79. Brown A. G. 1981. Organization in the Spinal Cord: The Anatomy and Physiology of Identified Neurons, Springer-Verlag, Berlin.

    Google Scholar 

  80. Fyffe, R. E. 1979. The morphology of group II muscle afferent fibre collaterals. J. Physiol. 296:39–40.

    Google Scholar 

  81. Brown, A. G. and Fyffe, R. E. 1979. The morphology of group Ib afferent fibre collaterals in the spinal cord of the cat. J. Physiol. 296:215–226.

    Google Scholar 

  82. Grozdanovic, Z. and Baumgarten, H. G. 1999. Nitric oxide synthase in skeletal muscle fibers: A signaling component of the dystrophin-glycoprotein complex. Histol. Histopathol. 14:243–256.

    Google Scholar 

  83. He, X. H., Tay, S. S., and Ling, E. A. 1997. Expression of NADPH-diaphorase and nitric oxide synthase in lumbosacral motoneurons after knee joint immobilisation in the guinea pig. J. Anat. 191:603–610.

    Google Scholar 

  84. Schmid, H. A. and Pehl, U. 1996. Regional specific effects of nitric oxide donors and cGMP on the electrical activity of neurons in the rat spinal cord. J. Chem. Neuroanat. 10:197–201.

    Google Scholar 

  85. Pehl, U. and Schmid, H. A. 1997. Electrophysiological responses of neurons in the rat spinal cord to nitric oxide. Neuroscience 77:563–573.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadežda Lukáčová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukáčová, N., Kafka, J., Čížková, D. et al. The Effect of Cauda Equina Constriction on Nitric Oxide Synthase Activity. Neurochem Res 29, 429–439 (2004). https://doi.org/10.1023/B:NERE.0000013748.93150.21

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000013748.93150.21

Navigation