Skip to main content
Log in

Effective combinatorial strategy to increase affinity of carbohydrate binding by peptides

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The Thomsen-Friedenreich antigen, a carcinoma-associated disaccharide involved in carcinoma cell homotypic aggregation and increased metastatic potential, has clinical value as a prognostic indicator and a marker of metastasized cells. Hence, it can reasonably be predicted that antigen-binding macromolecules are valuable clinical invivo diagnostic/therapeutic targeting agents. Recently, we have selected first-generation antigen-binding peptides from a random peptide bacteriophage display library and have applied combinatorial affinity maturation to select functionally-maturated peptides, which target cultured carcinoma cells and inhibit carcinoma cell aggregation. In the current study we hypothesize that a targeted search of sequence space surrounding the antigen-binding consensus sequence will select unpredictable amino acid sequences in the non-consensus portions of the peptides, leading to increased affinity for the carbohydrate and greater solubility in physiological buffers. This comprehensive in vitro analysis demonstrates that preferential evolution of the amino-terminal sequence of the peptides occurred, which correlated, in structure/function studies, with the acquisition of maturated function. The maturated peptides are more soluble than the earlier peptides. Studies of peptide binding to the disaccharide indicate that two maturated peptides (P-30-1, F03) have higher affinity for the antigen and bind with higher intensity to the surface of cultured human carcinoma cells than the first-generation peptides. The results support our hypothesis that affinity maturation can improve carbohydrate binding by peptides and have theoretical importance as the first report of maturation of carbohydrate-binding affinity in a small, soluble peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marx, J., Cancer research. New insights into metastasis, Science, 294(5541) (2001) 281–282.

    Article  CAS  Google Scholar 

  2. Alper, J., Searching for medicine's sweet spot, Science, 291(5512) (2001) 2338–2343.

    Article  CAS  Google Scholar 

  3. Brockhausen, I., Schutzbach, J. and Kuhns, W., Glycoproteins and their relationship to human disease, Acta Anatomica, 161(1–4) (1998) 36–78.

    Article  CAS  Google Scholar 

  4. Luzzi, K. J., et al., Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases, Amer. J. Pathol., 153(3) (1998) 865–873.

    CAS  Google Scholar 

  5. Updyke, T. V. and Nicolson, G. L., Malignant melanoma cell lines selected in vitro for increased homotypic adhesion properties have increased experimental metastatic potential, Clin. Exper. Metastasis, 4(4) (1986) 273–284.

    Article  CAS  Google Scholar 

  6. Lotan, R. and Raz, A., Low colony formation in vivo and in culture as exhibited by metastatic melanoma cells selected for reduced homotypic aggregation, Cancer Res., 43(5) (1983) 2088–2093.

    CAS  Google Scholar 

  7. Meromsky, L., Lotan, R. and Raz, A., Implications of endogenous tumor cell surface lectins as mediators of cellular interactions and lung colonization, Cancer Res., 46(10) (1986) 5270–5275.

    CAS  Google Scholar 

  8. Saiki, I., et al., Characterization of the invasive and metastatic phenotype in human renal cell carcinoma, Clin. Exper. Metastasis, 9(6) (1991) 551–566.

    Article  CAS  Google Scholar 

  9. Al-Mehdi, A. B., et al., Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis, Nature Medicine, 6(1) (2000) 100–102.

    Article  CAS  Google Scholar 

  10. Springer, G. F. and Desai, P. R., Cross-reacting carcinoma-associated antigens with blood group and precursor specificities, Transplantation Proceedings, 9(1) (1977) 1105–1111.

    CAS  Google Scholar 

  11. Springer, G. F., et al., Proposed molecular basis of murine tumor cell-hepatocyte interaction, J. Biol. Chem., 258(9) (1983) 5702–5706.

    CAS  Google Scholar 

  12. Springer, G. F., Desai, P. R. and Banatwala, I., Blood group MN antigens and precursors in normal and malignant human breast glandular tissue, J. National Cancer Institute, 54(2) (1975) 335–339.

    CAS  Google Scholar 

  13. Wolf, M. F., et al., Increased expression of Thomsen-Friedenreich antigens during tumor progression in breast cancer patients, Tumour Biology, 9(4) (1988) 190–194.

    Article  CAS  Google Scholar 

  14. Khaldoyanidi, S. K., et al., MDA-MB-435 human breast carcinoma cell homo-and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigengalectin-3 interactions, J. Biol. Chem., 278(6) (2003) 4127–4134.

    Article  CAS  Google Scholar 

  15. Glinsky, V. V., et al., The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium, Cancer Res., 61(12) (2001) 4851–4857.

    CAS  Google Scholar 

  16. Glinsky, V. V., et al., Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells, Cancer Res., 60(10) (2000) 2584–2588.

    CAS  Google Scholar 

  17. Kasai, K. and Hirabayashi, J., Galectins: A family of animal lectins that decipher glycocodes, J. Biochem., 119(1) (1996) 1–8.

    CAS  Google Scholar 

  18. Matarrese, P., et al., Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties, Internat. J. Cancer, 85(4) (2000) 545–554.

    Article  CAS  Google Scholar 

  19. Baldus, S. E., et al., Coexpression of MUC1 mucin peptide core and the Thomsen-Friedenreich antigen in colorectal neoplasms, Cancer, 82(6) (1998) 1019–1027.

    Article  CAS  Google Scholar 

  20. Baldus, S. E., et al., Thomsen-Friedenreich antigen presents as a prognostic factor in colorectal carcinoma: A clinicopathologic study of 264 patients, Cancer, 88(7) (2000) 1536–1543.

    Article  CAS  Google Scholar 

  21. Peletskaya, E. N., et al., Characterization of peptides that bind the tumor-associated Thomsen-Friedenreich antigen selected from bacteriophage display libraries, J. Molecular Biol., 270(3) (1997) 374–384.

    Article  CAS  Google Scholar 

  22. Peletskaya, E. N., et al., Identification of peptide sequences that bind the Thomsen-Friedenreich cancer-associated glycoantigen from bacteriophage peptide display libraries, Molecular Diversity, 2(1–2) (1996) 13–18.

    Article  CAS  Google Scholar 

  23. Rittenhouse-Diakun, K., et al., Development and characterization of monoclonal antibody to T-antigen: (gal beta1-3GalNAc-alpha-O), Hybridoma, 17(2) (1998) 165–173.

    Article  CAS  Google Scholar 

  24. Houghten, R. A., et al., Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery, Nature, 354(6348) (1991) 84–86.

    Article  CAS  Google Scholar 

  25. Rademann, J. and Jung, G., Techview: Drug discovery. Integrating combinatorial synthesis and bioassays, Science, 287(5460) (2000) 1947–1948.

    Article  CAS  Google Scholar 

  26. Ryu, D. D. and Nam, D. H., Recent progress in biomolecular engineering, Biotechnology Progress, 16(1) (2000) 2–16.

    Article  CAS  Google Scholar 

  27. Kay, B. K., et al., Convergent evolution with combinatorial peptides, FEBS Letters, 480(1) (2000) 55–62.

    Article  CAS  Google Scholar 

  28. Scott, J. K. and Smith, G. P., Searching for peptide ligands with an epitope library, Science, 249(4967) (1990) 386–390.

    CAS  Google Scholar 

  29. Siebert, H. C., et al., Analysis of protein-carbohydrate interaction at the lower size limit of the protein part (15-mer peptide) by NMR spectroscopy, electrospray ionization mass spectrometry, and molecular modeling, Biochemistry, 41(30) (2002) 9707–9717.

    Article  CAS  Google Scholar 

  30. Landon, L. A., et al., Combinatorial evolution of high affinity peptides that bind to the Thomsen-Friedenreich carcinoma antigen, J. Prot. Chem., 22(2) (2003) 193–204.

    Article  CAS  Google Scholar 

  31. Smith, G. P. and Yu, J., In search of dark horses: Affinity maturation of phage-displayed ligands, Molecular Diversity, 2(1–2) (1996) 2–4.

    Article  CAS  Google Scholar 

  32. Foote, J. and Eisen, H. N., Breaking the affinity ceiling for antibodies and T cell receptors, Proceedings of the National Academy of Sciences of the United States of America, 97(20) (2000) 10679–10681.

    Article  CAS  Google Scholar 

  33. Yu, J. and Smith, G. P., Affinity maturation of phage-displayed peptide ligands, Methods in Enzymology, 267 (1996) 3–27.

    Article  CAS  Google Scholar 

  34. Kirschner, K. N. W. R. J., Solvent interactions determine carbohydrate conformation, Proceedings of the National Academy of Sciences of the United States of America, 98(19) (2001) 10541–10545.

    Article  CAS  Google Scholar 

  35. Smith, G. P. and Petrenko, V. A., Phage display, Chemical Reviews, 97(2) (1997) 391–410.

    Article  CAS  Google Scholar 

  36. Lotan, R., et al., The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea), J. Biol. Chem. 250(21) (1975) 8518–8523.

    CAS  Google Scholar 

  37. Pereira, M. E., et al., Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin, Carbohydrate Research, 51(1) (1976) 107–118.

    Article  CAS  Google Scholar 

  38. Haas, S. J. and Smith, G. P., Rapid sequencing of viral DNA from filamentous bacteriophage, Biotechniques, 15(3) (1993) 422–424, 426–428, 431.

    CAS  Google Scholar 

  39. Pietrokovski, S., Searching databases of conserved sequence regions by aligning protein multiple-alignments (erratum appears in Nucleic Acids Res. 1996 Nov. 1 24(21) 4372.), Nucleic Acids Res., 24(19) (1996) 3836–3845.

    Article  CAS  Google Scholar 

  40. Schneider, T. D. and Stephens, R. M., Sequence logos: A new way to display consensus sequences, Nucleic Acids Res., 18(20) (1990) 6097–6100.

    CAS  Google Scholar 

  41. Henikoff, S., et al., Automated construction and graphical presentation of protein blocks from unaligned sequences, Gene., 163(2) (1995) GC17–GC26.

    Article  CAS  Google Scholar 

  42. Schneider, T. D., Evolution of biological information, Nucleic Acids Res., 28(14) (2000) 2794–2799.

    Article  CAS  Google Scholar 

  43. Spiro, R. G., Studies on fetuin, a glycoprotein of fetal serum. I. Isolation, chemical composition, and physicochemical properties, J. Biol. Chem., 235(10) (1960) 2860.

    CAS  Google Scholar 

  44. Edge, A. S. and Spiro, R. G., Presence of an O-glycosidically linked hexasaccharide in fetuin, J. Biol. Chem., 262(33) (1987) 16135–16141.

    CAS  Google Scholar 

  45. Panchuk-Voloshina, N., et al., Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, Journal of Histochemistry and Cytochemistry, 47(9) (1999) 1179–1188.

    CAS  Google Scholar 

  46. Triantafilou, K., Triantafilou, M. and Fernandez, N., Lipopolysaccharide (LPS) labeled with Alexa 488 hydrazide as a novel probe for LPS binding studies, Cytometry, 41(4) (2000) 316–320.

    Article  CAS  Google Scholar 

  47. Denzin, L. K. and Voss, E.W., Construction, characterization, and mutagenesis of an anti-fluorescein single chain antibody idiotype family, J. Biol. Chem., 267(13) (1992) 8925–8931.

    CAS  Google Scholar 

  48. Gudgin Templeton, E. F. and Ware, W. R., Charge transfer between fluorescein and tryptophan as a possible interaction in the binding of fluorescein to anti-fluorescein antibody, Molecular Immunology, 22(1) (2985) 45–55.

  49. Mummert, M. E. and Voss, E. W., Effects of secondary forces on the ligand binding properties and variable domain conformations of a monoclonal anti-fluorescyl antibody, Molecular Immunology, 33(13) (1996) 1067–1077.

    Article  CAS  Google Scholar 

  50. Mummert, M. E. and Voss, E. W., Effects of secondary forces on the ligand binding and conformational state of antifluorescein monoclonal antibody 9-40, Biochemistry, 36(39) (1997) 11918–11922.

    Article  CAS  Google Scholar 

  51. Watt, R. M. and Voss, E.W., Mechanism of quenching of fluorescein by anti-fluorescein IgG antibodies, Immunochemistry, 14(7) (1977) 533–551.

    Article  CAS  Google Scholar 

  52. Kim, C., Paulus, B. F. and Wold, M. S., Interactions of human replication protein A with oligonucleotides, Biochemistry, 33(47) (1994) 14197–14206.

    Article  CAS  Google Scholar 

  53. Schmidt, C. M., et al., Characterization of spontaneous metastasis in an aggressive breast carcinoma model using flow cytometry, Clin. Exper. Metastasis, 17(6) (1999) 537–544.

    Article  CAS  Google Scholar 

  54. Fidler, I. J., Biological behavior of malignant melanoma cells correlated to their survival in vivo, Cancer Res., 35 (1975) 218–224.

    CAS  Google Scholar 

  55. Soisson, S. M., et al., Structural basis for ligand-regulated oligomerization of AraC, Science, 276(5311) (1997) 421–425.

    Article  CAS  Google Scholar 

  56. Samanta, U., Pal, D. and Chakrabarti, P., Environment of tryptophan side chains in proteins, Proteins, 38(3) (2000) 288–300.

    Article  CAS  Google Scholar 

  57. Banerjee, R., et al., Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex, J. Molecular Biol., 259(2) (1996) 281–296.

    Article  CAS  Google Scholar 

  58. Siebert, H. C., et al., Role of aromatic amino acids in carbohydrate binding of plant lectins: Laser photo chemically induced dynamic nuclear polarization study of hevein domain-containing lectins, Proteins, 28(2) (1997) 268–284.

    Article  CAS  Google Scholar 

  59. Simpson, P. J., et al., The structural basis for the ligand specificity of family 2 carbohydrate-binding modules, J. Biol. Chem., 275(52) (2000) 41137–41142.

    Article  CAS  Google Scholar 

  60. Ponyi, T., et al., Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands, Biochemistry, 39(5) (2000) 985–991.

    Article  CAS  Google Scholar 

  61. Luo, P., et al., A molecular basis for functional peptide mimicry of a carbohydrate antigen, J. Biol. Chem., 275(21) (2000) 16146–16154.

    Article  CAS  Google Scholar 

  62. Sears, P. and Wong, C. H., Intervention of carbohydrate recognition by proteins and nucleic acids, Proceedings of the National Academy of Sciences of the United States of America, 93(22) (1996) 12086–12093.

    Article  CAS  Google Scholar 

  63. Jimbo, A. and Matsumoto, I., Involvement of a tyrosyl residue in the interaction of peanut lectin with lactose, J. Biochem., 91(3) (1982) 945–951.

    CAS  Google Scholar 

  64. Rao, V. S., Lam, K. and Qasba, P. K., Architecture of the sugar binding sites in carbohydrate binding proteins — A computer modeling study, Internat. J. Biol. Macromolecules, 23(4) (1998) 295–307.

    Article  CAS  Google Scholar 

  65. Pratt, W., 'The Entry, Distribution, and Elimination of Drugs', in W. Pratt and P. Taylor (eds), Principles of Drug Action. The Basis of Pharmacology, Churchill Livingstone, New York, (1990) pp. 201–296.

    Google Scholar 

  66. De Kroon, A. I., et al., The role of charge and hydrophobicity in peptide-lipid interaction: A comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers, Biochemistry, 29(36) (1990) 8229–8240.

    Article  CAS  Google Scholar 

  67. Jain, R. K., Delivery of novel therapeutic agents in tumors: Physiological barriers and strategies, J. National Cancer Institute, 81(8) (1989) 570–576.

    CAS  Google Scholar 

  68. Komissarov, A. A. and Deutscher, S. L., Thermodynamics of Fab-ssDNA interactions: Contribution of heavy chain complementarity determining region 3, Biochemistry, 38(44) (1999) 14631–14637.

    Article  CAS  Google Scholar 

  69. Komissarov, A. A., et al., Equilibrium binding studies of recombinant anti-single-stranded DNA Fab. Role of heavy chain complementarity-determining regions, J. Biol. Chem., 271(21) (1996) 12241–12246.

    Article  CAS  Google Scholar 

  70. Yelton, D. E., et al., Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis, J. Immunology, 155(4) (1995) 1994–2004.

    CAS  Google Scholar 

  71. Boder, E. T., Midelfort, K. S. and Wittrup, K. D., Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity, Proceedings of the National Academy of Sciences of the United States of America, 97(20) (2000) 10701–10705.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Deutscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landon, L.A., Zou, J. & Deutscher, S.L. Effective combinatorial strategy to increase affinity of carbohydrate binding by peptides. Mol Divers 8, 35–50 (2004). https://doi.org/10.1023/B:MODI.0000006897.40575.41

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006897.40575.41

Navigation