Skip to main content
Log in

Complex Parametric Vibrations of Flexible Rectangular Plates

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper we consider parametric oscillations of flexible plates within the model of von Kármán equations. First we propose the general iterational method to find solutions to even more general problem governed by the von Kármán–Vlasov–Mushtari equations. In the language of physics the found solutions define stress–strain state of flexible shallow shell with a bounded convex space ΩεR 2 and with sufficiently smooth boundary Γ. The new variational formulation of the problem has been proposed and his validity and application has been discussed using precise mathematical treatment. Then, using the earlier introduced theoretical results, an effective algorithm has been applied to convert problem of finding solutions to hybrid type partial differential equations of von Kármán form to that of the ordinary differential (ODEs) and algebraic (AEs) equations. Mechanisms of transition to chaos of deterministic systems with infinite number of degrees of freedom are presented. Comparison of mechanisms of transition to chaos with known ones is performed. The following cases of longitudinal loads of different sign are investigated: parametric load acting along X direction only, and parametric load acting in both directions X and Y with the same amplitude and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vlasov, V.Z., General Theory of Shells and Its Applications in Technology, Gostekhizdat, Moskva, 1949.

    Google Scholar 

  2. Volmir, A.S., Flexible Plate and Shells, Gostekhizdat, Moskva, 1956.

    Google Scholar 

  3. Mushtari, Kh.M. and Galimov, K.Z., Nonlinear Theory of Elastic Shells, Tatknigoizdat, Kazan, 1957.

    Google Scholar 

  4. Awrejcewicz, J. and Krysko, V.A., Dynamics of Continuous Systems, WNT, Warsaw, 1999 (in Polish).

    Google Scholar 

  5. Awrejcewicz, J. and Krysko, V.A., Dynamics and Stability of Shells with Thermal Excitations, WNT, Warsaw, 1999 (in Polish).

    Google Scholar 

  6. Awrejcewicz, J. and Krysko, V.A., ‘3D theory versus 2D approximate theory of the free orthotropic (isotropic) plates and shells vibrations. Part 1. Derivation of governing equations and Part 2, Numerical algorithms and analysis’, J. Sound Vib. 226(5) (1999) 807–829, 831–871.

    Google Scholar 

  7. Awrejcewicz, J., Krysko, V.A. and Kutsemako, N., ‘Free vibrations of doubly curved in-plane non-homogeneous shells’, J. Sound Vib. 225(4) (1999) 701–722.

    Google Scholar 

  8. Awrejcewicz, J. and Krysko, V.A., ‘Vibration analysis of the plates and shells of moderate thickness’, J. Tech. Phys. 40(3) (1999) 277–305.

    Google Scholar 

  9. Awrejcewicz, J. and Krysko, V.A., Techniques and Methods of Plates and Shells Analysis, Łódź Technical University Press, Łódź, 1996.

    Google Scholar 

  10. Kirchhoff, G., Vorlesungen über Mathematische Physik. 1. Mechanik, 1976.

  11. Love, A.E., A Treatise on Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927.

    Google Scholar 

  12. Pietraszkiewicz, W., ‘Geometrically nonlinear theories of thin elastic shells’, Adv. Mech. 12(1) (1989) 51–130.

    Google Scholar 

  13. Awrejcewicz, J., Asymptotic Methods — A New Perspective of Knowledge, Łódź Technical University Press, Łódź, 1995 (in Polish).

    Google Scholar 

  14. Awrejcewicz, J., Andrianov, I.V. and Manevich, L.I., Asymptotic Approach in Nonlinear Dynamics: New Trends and Applications, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  15. Andrianov, I.V. and Awrejcewicz, J., ‘New trends in asymptotic approaches. Part 1. Summation and interpolation methods’, Appl. Mech. Rev. 54(1) (2001) 69–92.

    Google Scholar 

  16. Chang, S.I., Bajaj, A.K. and Davies, P., ‘Bifurcation and chaotic motions in resonantly excited structures’, in: Awrejcewicz, J. (ed.), Bifurcation and Chaos — Theory and Applications, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  17. Awrejcewicz, J., ‘Strange nonlinear behaviour governed by a set of four averaged amplitude equations’, Meccanica 31 (1996) 347–361.

    Google Scholar 

  18. Chueshov, I.D., ‘Strong solutions and the attractors for von Kármán equations’, Math. USSR Sbornik 69 (1991) 25–36 (in Russian).

    Google Scholar 

  19. Chueshov, I.D., ‘Finite dimensionality of an attractor in some problems of nonlinear shell theory’, Math. USSR Sbornik 61 (1988) 419–428 (in Russian).

    Google Scholar 

  20. Favini, A., Horn, M.A., Lasiecka, I. and Tataru, D., ‘Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation’, Differ. Integral Eq. 9 (1996) 267–294.

    Google Scholar 

  21. Lasiecka, I. and Heyman, W.S., ‘Asymptotic behaviour of solutions in nonlinear dynamic elasticity’, Discret. Contin. Dyn. Syst. 1 (1995) 237–252.

    Google Scholar 

  22. Lasiecka, I., ‘Finite dimensionality of attractors associated with von Kármán plate equations and boundary damping’, J. Differ. Eq. 117 (1995) 357–389.

    Google Scholar 

  23. Lasiecka, I., ‘Local and global compact attractors arising in nonlinear elasticity’, J. Math. Anal. Appl. 196 (1995) 332–360.

    Google Scholar 

  24. Lasiecka, I. and Tataru, D., ‘Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping’, Differ. Integral Eq. 6 (1993) 507–533.

    Google Scholar 

  25. Lasiecka, I., ‘Finite dimensionality and compactness of attractors for von Kármán equations with nonlinear dissipation’, Nonlinear Differ. Eq. Appl. 6 (1999) 437–472.

    Google Scholar 

  26. Krysko, V.A., Awrejcewicz, J. and Bruk, V.M., ‘The existence and uniqueness of solution of one coupled thermomechanics problem’, J. Appl. Anal. 8(1) (2002) 129–139.

    Google Scholar 

  27. Krysko, V.A., Awrejcewicz, J. and Bruk, V., ‘On the solution of a coupled thermo-mechanical problem for non-homogeneous Timoshenko-type shells’, J. Math. Anal. Appl. 273(2) (2002) 409–416.

    Google Scholar 

  28. Lions, J., Quelques Méthods de Resolution des Problèmes aux Limite Non-linéaires, Dunod Gauthier-Villars, Paris, 1969.

    Google Scholar 

  29. Lions, J. and Magenes, E., Non-homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972.

    Google Scholar 

  30. Kantorovich, L.V., ‘On one of direct methods of an approximate solution of the problem of minimum of a doubled integral’, Izv. AN SSSR, Math. Real Sci. 5 (1933) 647–652.

    Google Scholar 

  31. Vlasov, V.Z., ‘A new practical method of computations of sandwich coverings and shells’, Ind. Design 11, 12 (1932) 33–37, 21–26.

    Google Scholar 

  32. Kantorovich, L.V., ‘On convergence of the reduction method to ordinary differential equations’, Dokl. AN SSSR 30(7) (1941) 579–582.

    Google Scholar 

  33. Vlasovoy, Z.A., ‘On the method of reduction to ordinary differential equations’, Bull. Math. Inst. AN SSSR 53 (1959) 16–36.

    Google Scholar 

  34. Kirichenko, V.F. and Krysko, V.A., ‘On the problem of solution of non-linear boundary value problems using the Kantorovich—Vlasov method’, Differ. Eq. 16(12) (1980) 2186–2189.

    Google Scholar 

  35. Vorovich, I.I., ‘On direct method in theory of nonlinear shallow shells’, Appl. Math. Mech. 20(4) (1956) 449–474.

    Google Scholar 

  36. Michlin, S.G., Variational Methods in Mathematical Physics, Nauka, Moscow, 1970.

    Google Scholar 

  37. Kirichenko, V.E. and Krysko, V.A., ‘Method of variational iterations in the plates theory and its background’, Appl. Mech. 17(4) (1981) 71–76.

    Google Scholar 

  38. Ramberg, W., Pherson, A.E. and Levy, S., ‘Normal pressure tests of rectangular plates’, NACAT 849 (1942).

  39. Krysko, V.A., Nonlinear Status and Dynamics of Non-homogeneous Shells, Saratov University Press, Saratov, 1976.

    Google Scholar 

  40. Krysko, V.A. and Krysko, A.V., ‘Bifurcation problems and elastic stability loss in nonlinear theory of plates’, in: Mechanics of Plates and Shells in XXI Century, Saratov, 1999 (in Russian).

  41. Krysko, V.A., Vakhalaeva, T.V. and Krysko, A.V., ‘Complex symmetric oscillations and bifurcations of plates under longitudinal loads of different sign’, Trans. Nizhenogorod University Series Mechanics 2 (2000) 153–160 (in Russian).

    Google Scholar 

  42. Krysko, V.A., Vakhalaeva, T.V. and Krysko, A.V., ‘Dynamics and bifurcations of flexible elasto-plastic systems with nonuniform boundary conditions along edge under longitudinal loads of different sigh’, in: Current Problems of Mechanics of Shells. Proceedings of the International Conference, 2000, Kazan, pp. 284–289 (in Russian).

  43. Awrejcewicz, J., Krysko, V.A. and Krysko, A.V., ‘Spatial-temporal chaos and solitons exhibited by von Kármán model’, Int. J. Bif. Chaos 12(7) (2002) 1465–1513.

    Google Scholar 

  44. Awrejcewicz, J. and Krysko, V.A., Nonclassical Thermoelastic Problems in Nonlinear Dynamics of Shells, Springer-Verlag, Berlin, 2003.

    Google Scholar 

  45. Volmir, A.S., Stability of Deformable Systems, Nauka, Moscow, 1967.

    Google Scholar 

  46. Stoliarov, N.N. and Riabov, A.A., ‘Stability and post-critical behaviour of rectangular plates with variable thickness’, in: Investigation of Shells, Kazan, 1981, pp. 135–145.

  47. Feigenbaum, M.J., ‘Universal behaviour in nonlinear systems’, Los Alamos Sci. 1 (1980) 4–27.

    Google Scholar 

  48. Pomeau, Y. and Manneville, P., ‘Intermittent transition to turbulence in dissipative dynamical systems’, Commun. Math. Phys. 74 (1980) 189–197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Awrejcewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awrejcewicz, J., Krysko, V. & Krysko, A. Complex Parametric Vibrations of Flexible Rectangular Plates. Meccanica 39, 221–244 (2004). https://doi.org/10.1023/B:MECC.0000022845.52667.b0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MECC.0000022845.52667.b0

Navigation