Skip to main content
Log in

Jak2 tyrosine kinase residues glutamic acid 1024 and arginine 1113 form a hydrogen bond interaction that is essential for Jak-STAT signal transduction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Angiotensin II is a well-known vasoactive peptide, but it can also act as a potent growth factor, partially through activation of the tyrosine kinase Jak2. Activated Jak2 tyrosine phosphorylates and activates members of the Signal Transducers and Activators of Transcription (STAT) family of cytoplasmic transcription factors. Recently, we demonstrated that tryptophan 1020 and glutamic acid 1024 within the Jak2 activation loop are required for Jak2 tyrosine kinase activity. Here, we sought to elucidate the requirement of glutamic acid 1024 for Jak2 function. Using molecular modeling algorithms of the Jak2 kinase domain, we identified a putative interaction between glutamic acid 1024 and an arginine at position 1113. We generated a series of charge-based substitution mutations at position 1113 and found that conversion of arginine 1113 to glutamic acid, alanine, or lysine prevented Jak2 autophosphorylation. Furthermore, mutation of arginine 1113 prevented the following angiotensin II-dependent processes from occurring: (1) Jak2 tyrosine phosphorylation, (2) Jak2/AT1receptor co-association, (3) STAT1 recruitment to the Jak2/AT1receptor complex, (4) STAT1 tyrosine phosphorylation, and (5) STAT-mediated gene expression. We determined that the interaction between glutamic acid 1024 and arginine 1113 consists of two distinct hydrogen bonds. We conclude that these hydrogen bond interactions are critical for Jak2 kinase function and subsequent angiotensin II-dependent activation of the Jak/STAT signaling pathway. (Mol Cell Biochem 265: 161–169, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM: An-giotensin II stimulates sis-inducing factor-like DNA binding activity. J Biol Chem 269: 31443–31449, 1994

    Google Scholar 

  2. Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM: Activation of the STAT pathway by Angiotensin II in T3CHO/AT1A cells. J Biol Chem 270: 19059–19065, 1995

    Google Scholar 

  3. Marrero MB, Scheiffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE: Direct stimulation of the Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375: 247–250, 1995

    Google Scholar 

  4. Seki Y, Kai H, Shibata R, Nagata T, Yasukawa H, Yoshimura A, Imaizumi T: Role of the JAK/STAT pathway in rat carotid artery re-modeling after vascular injury. Circ Res 87: 12–18, 2000

    Google Scholar 

  5. Pan J, Fukudu K, Kodama H, Makino S, Takahashi T, Sano M, Hori S, Ogawa S: Role of angiotensin II in the activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 81: 611–617, 1997

    Google Scholar 

  6. Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, Ogawa S: Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84: 1127–1136, 1999

    Google Scholar 

  7. Kodama H, Fukuda K, Pan J, Makino S, Baba A, Hori S, Ogawa S: Leukemia inhibitory factor, a potent cardiac hypertrophic cytokine, ac-tivates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 81: 656–663, 1997

    Google Scholar 

  8. Kodama H, Fukuda K, Pan J, Makino S, Sano M, Takahashi T, Hori S, Ogawa S: Biphasic activation of the JAK/STAT pathway by angiotensin II in rat cardiomyocytes. Circ Res 82: 244–250, 1998

    Google Scholar 

  9. Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y, Yamauchi-Takihara K, Kishimoto T: Activation of JAK/STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes. Circulation 94: 2626–2632, 1996

    Google Scholar 

  10. Pennica D, Wood WI, Chien KR: Cardiotrophin-1: A multifunctional cytokine that signals via LIF receptor-gp130 dependent pathways. Cy-tokine Growth Factor Rev 7: 81–91, 1996

    Google Scholar 

  11. Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishi-moto T: Activatio of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 98: 346–352, 1998

    Google Scholar 

  12. Kodama H, Fukuda K, Pan J, Sano M, Takahashi T, Kato T, Makino S, Manabe T, Murata M, Ogawa S: Am J Physiol Heart Circ Physiol 279: H1635–H1644, 2000

    Google Scholar 

  13. Mascareno E, El-Shafei M, Maulik N, Sato M, Guo Yueling, Das Dipak K, Siddiqui MAQ: JAK/STAT signaling is associated with cardiac dys-function during ischemia and reperfusion. Circulation 104: 325–329, 2001

    Google Scholar 

  14. Sano M, Fukudu K, Kodama H, Pan J, Saito M, Matsuzaki J, Takahashi T, Makino S, Kato T, Ogawa S: Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem 275: 29717–29723, 2000

    Google Scholar 

  15. Briscoe J, Rogers NC, Witthuhn BA, Watling D, Harpur AG, Wilks AF, Stark GR, Ihle JN, Kerr IM: Kinase-negative mutants of Jak1 can sustain gamma-inducible gene expression but not an antiviral state. EMBO J 15: 799–809, 1996

    Google Scholar 

  16. Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN: Ac-tivation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17: 2497–2501, 1997

    Google Scholar 

  17. Zhuang H, Patel SV, He T, Sonsteby SK, Niu Z, Wojchowski DM: Inhibition of erythropoietin-induced mitogenesis by a kinase-deficient form of Jak2. J Biol Chem 269: 21411–21414, 1994

    Google Scholar 

  18. Sayeski PP, Ali MS, Safavi A, Lyles M, Kim SO, Frank SJ, Bernstein KE: A catalytically active Jak2 is required for the angiotensin II-dependent activation of Fyn. J Biol Chem 274: 33131–33142, 1999

    Google Scholar 

  19. Ali MS, Sayeski PP, Bernstein KE: Jak2 acts as both a STAT1 kinase and as a molecular bridge linking STAT1 to the angiotensin II AT1 receptor. J Biol Chem 275: 15586–15593, 2000

    Google Scholar 

  20. VonDerLinden D, Ma X, Sandberg EM, Gernert K, Bernstein KE, Sayeski PP: Mutation of glutamic acid residue 1046 abolishes Jak2 tyrosine kinase activity. Mol Cell Biochem 241: 87–94, 2002

    Google Scholar 

  21. Sayeski PP, Ali MS, Hawks K, Frank SJ, Bernstein KE: The angiotensin II-dependent association of Jak2 and c-Src requires the N-terminus of Jak2 and the SH2 domain of c-Src. Circ Res 84: 1332–1338, 1999

    Google Scholar 

  22. Zhao Y, Wagner F, Frank SJ, Kraft AS: The amino-terminal portion of the Jak2 protein kinase is necessary for binding and phosphorylation of the granulocyte-macrophage colony-stimulating factor receptor beta c chain. J Biol Chem 270: 13814–13818, 1995

    Google Scholar 

  23. Frank SJ, Yi W, Zhao Y, Goldsmith JF, Gilliland G, Jiang J, Sakai I, Kraft AS: Regions of the Jak2 tyrosine kinase required for cou-pling to the growth hormone receptor. J Biol Chem 270: 14766–14785, 1995

    Google Scholar 

  24. Sayeski PP, Ali MS, Frank SJ, Bernstein KE: The angiotensin II-dependent nuclear translocation of STAT1 is mediated by the Jak2 pro-tein motif 231YRFRR. J Biol Chem 276: 10556–10563, 2001

    Google Scholar 

  25. Fuerst TR, Moss B: Structure and stability of mRNAsynthesized by vac-cinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells: Importance of the 5untranslated leader. J Mol Biol 206: 333–348, 1989

    Google Scholar 

  26. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. Wiley, NewYork, 1997

  27. Ali MS, Sayeski PP, Dirksen LB, Hayzer DJ, Marrero MB, Bernstein KE: Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J Biol Chem 272: 23382–23388, 1997

    Google Scholar 

  28. Sayeski PP, Ali MS, Harp JB, Marrero MB, Bernstein KE: Phosphory-lation of p130Cas by angiotensin II is dependent on c-Src, intracellular Ca 2 +, and protein kinase C. Circ Res 82: 1279–1288, 1998

    Google Scholar 

  29. McDonald IK, Thornton JM: Satisfying hydrogen bonding potentials in proteins. J Mol Biol 238: 777–793, 1994

    Google Scholar 

  30. Chen WS, Lazar CS, Poenie M, Tsien RY, Gill GN, Rosenfeld MG: Requirement for intrinsic protein tyrosine kinase in the immediate and late actions of the EGF receptor. Nature 328: 820–823, 1987

    Google Scholar 

  31. Kleinberger-Doron N, Shelah N, Capone R, Gazit A, Livitzki A: Inhibi-tion of Cdk2 activation by selected tyrphostins causes cell cycle arrest at late G1 and S phase. Exp Cell Res 24: 340–351, 1998

    Google Scholar 

  32. Oda Y, Renaux B, Bjorge J, Saifeddine M, Fujita DJ, Hollenberg MD: cSrc is a major cytosolic tyrosine kinase in vascular tissue. Can J Physiol Pharmacol 77: 606–617, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandberg, E.M., VonDerLinden, D., Ostrov, D.A. et al. Jak2 tyrosine kinase residues glutamic acid 1024 and arginine 1113 form a hydrogen bond interaction that is essential for Jak-STAT signal transduction. Mol Cell Biochem 265, 161–169 (2004). https://doi.org/10.1023/B:MCBI.0000044393.67980.99

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000044393.67980.99

Navigation