Skip to main content
Log in

Permeability of fructose-1,6-bisphosphate in liposomes and cardiac myocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Fructose-1,6-bisphosphate (FBP) helps preserve heart and other organs under ischemic conditions. Previous studies indicated that it can be taken up by various cell types. Here we extended observations from our group that FBP could penetrate artificial lipid bilayers and be taken up by cardiac myocytes [8, 10], comparing the uptake of FBP to that of L-glucose. Using liposomes prepared by the freeze-thaw method, FBP entered about 200-fold slower than L-glucose. For liposomes of either soybean or egg lipids, 50 mM FBP enhanced the permeability of FBP itself, with little effect on general permeability (measured by uptake of L-glucose). In experiments with isolated cardiac myocytes at 21°C, FBP uptake exceeded the uptake of L-glucose by several fold and appeared to equilibrate by 60 min. There was both a saturable component at micromolar levels and a nonsaturable component which dominated at millimolar levels. The saturable component was inhibited by Pi and by other phosphorylated sugars, though with lower affinity than FBP. Both saturable and nonsaturable uptakes were also observed at 3°C. The results indicate that FBP enters myocytes not by simple penetration through the lipid bilayer, but via at least two distinct protein-dependent processes. The uptake could lead to intracellular effects important in hypothermic heart preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Niu W, Zhang F, Ehringer W, Tseng M, Gray L, Chien S: Enhancement of hypothermic heart preservation with fructose 1,6-diphosphate. J Surg Res 85: 120-129, 1999

    Article  PubMed  Google Scholar 

  2. Chien S, Zhang F, Niu W, Ehringer W, Chiang B, Shi X, Gray LA: Fructose-1,6-diphosphate and a glucose-free solution enhances functional recovery in hypothermic heart preservation. J Heart Lung Transplant 19: 277-285, 2000

    Article  PubMed  Google Scholar 

  3. Hua D, Zhuang X, Ye J, Wilson D, Chiang B, Chien S: Using fructose-1,6-diphosphate during hypothermic rabbit-heart preservation — a high-energy phosphate study. J Heart Lung Transplant 22: 574-582, 2003

    Article  PubMed  Google Scholar 

  4. Kelleher JA, Chan PH, Chan TYY, Gregory GA: Energy metabolism in hypoxic astrocytes: Protective mechanisms of fructose-1,6-bisphosphate. Neurochem Res 20: 785-792, 1995

    Article  PubMed  Google Scholar 

  5. Hassinen IE, Nuutinen EM, Ito K, Nioka S, Lazzarino G, Giardina B, Chance B: Mechanism of the effect of exogenous fructose 1,6-bisphosphate on myocardial energy metabolism. Circulation 83: 584-593, 1991

    PubMed  Google Scholar 

  6. Galzigna L, Rizzoli V, Bianchi M, Rigobello MP, Scuri R: Some effects of fructose-1,6-diphosphate on rat myocardial tissue related to a membrane-stabilizing action. Cell Biochem Function 7: 91-96, 1989

    Article  Google Scholar 

  7. Cavallini L, Dana R, Francesconi MA, Alexandre A: Fructose-1,6-diphosphate inhibits platelet activation. Biochem Pharmacol 43: 1539-1544, 1992

    Article  PubMed  Google Scholar 

  8. Ehringer WD, Niu W, Chiang B, Wang O-L, Gordon L, Chien S: Membrane permeability of fructose-1,6-diphosphate in lipid vesicles and endothelial cells. Mol Cell Biochem 210: 23-45, 2000

    Article  PubMed  Google Scholar 

  9. Ehringer WD, Su S, Chiang B, Stillwell W, Chien S: Destabilizing effects of fructose-1,6-bisphosphate on membrane bilayers. Lipids 37: 885-892, 2002

    PubMed  Google Scholar 

  10. Ehringer WD, Chiang B, Chien S: The uptake and metabolism of fructose-1,6-diphosphate in rat cardiomyocytes. Mol Cell Biochem 221: 33-40, 2001

    Article  PubMed  Google Scholar 

  11. Colston VL, Wheeler TJ: Stimulation of cardiac glucose transport by inhibitors of oxidative phosphorylation. Life Sciences 69: 2383-2398, 2001

    Article  PubMed  Google Scholar 

  12. Rett K, Wickimayr M, Dietze GJ, Häring HU: Insulin-induced glucose transporter (GLUT1 and GLUT4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes 45(suppl 1): S66-S69, 1996

    PubMed  Google Scholar 

  13. Wheeler TJ, Cole D, Hauck MA: Characterization of glucose transport activity reconstituted from heart and other tissues. Biochim Biophys Acta 1414: 217-230, 1998

    PubMed  Google Scholar 

  14. Kasahara M, Hinkle PC: Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem 252: 7384-7390, 1977

    PubMed  Google Scholar 

  15. Fischer Y, Rose H, Kammermeier H: Highly insulin-responsive isolated rat heart muscle cells yielded by a modified isolation method. Life Sci 49: 1679-1688, 1991

    Article  PubMed  Google Scholar 

  16. Beutler H-O: D-Fructose. In: H.U. Bergmeyer (ed). Methods of Enzymatic Analysis, vol 6, 3rd ed. Verlag Chemie, Weinheim, 1984, pp 321-327

    Google Scholar 

  17. Cornell NW, Leadbetter MG, Veech RL: Modifications in the enzymatic assay for inorganic phosphate. Anal Biochem 95: 524-526, 1979

    Article  PubMed  Google Scholar 

  18. Wheeler TJ, Hauck MA: Reconstitution of the glucose transporter from bovine heart. Biochim Biophys Acta 818: 171-182, 1985

    PubMed  Google Scholar 

  19. Hardin CD, Giardina B, Tavazzi B, DiPierro D, Lazzarino G, Galvano M, Rovetto MJ: Transport mechanism of fructose 1,6-bisphosphate in isolated rat hearts. J Mol Cell Cardiol 30: A62, 1998

    Google Scholar 

  20. Lazzarino G, Cattani L, Costrini R, Mulieri L, Candiani A, Galzigna L: Increase of intracrythrocytic fructose-1,6-diphosphate after incubation of whole human blood with fructose-1,6-diphosphate. Clin Biochem 17: 42-45, 1984

    Article  PubMed  Google Scholar 

  21. Gregory GA, Yu ACH, Chan PH: Fructose-1,6-bisphosphate protects astrocytes from hypoxic damage. J Cereb Blood Flow Metab 9: 29-34, 1989

    PubMed  Google Scholar 

  22. Hardin CD, Roberts TM: Metabolism of exogenously applied fructose 1,6-bisphosphate in hypoxic vascular smooth muscle. Am J Physiol 267: H2325-H2332, 1994

    PubMed  Google Scholar 

  23. Juergens TM, Hardin CD: Fructose-1,6-bisphosphate as a metabolic substrate in hog ileum smooth muscle during hypoxia. Mol Cell Biochem 154: 83-93, 1996

    Article  PubMed  Google Scholar 

  24. Tavazzi B, Starnes JW, Lazzarino G, DiPierro D, Nuutinen EM, Giardina B: Exogenous fructose-1,6-bisphosphate is a metabolizable substrate for the isolated normoxic rat heart. Basic Res Cardiol 87: 280-289, 1992

    Article  PubMed  Google Scholar 

  25. Takeuchi K, Cao-Danh H, Friehs I, Glynn P, D'Agostino D, Simplaceanu E, McGowan FX, del Nido PJ: Administration of fructose 1,6-diphosphate during early reperfusion significantly improves recovery of contractile function in the postischemic heart. J Thorac Cardiovasc Surg 116: 335-343, 1998

    Article  PubMed  Google Scholar 

  26. Williams JP, Headrick JP: Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: Assessment by 31PNMR spectroscopy. Biochim Biophys Acta 1276: 71-79, 1996

    PubMed  Google Scholar 

  27. Wheeler TJ: Translocation of glucose transporters in response to anoxia in heart. J Biol Chem 263: 19447-19454, 1988

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, T.J., McCurdy, J.M., denDekker, A. et al. Permeability of fructose-1,6-bisphosphate in liposomes and cardiac myocytes. Mol Cell Biochem 259, 105–114 (2004). https://doi.org/10.1023/B:MCBI.0000021356.89867.0d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000021356.89867.0d

Navigation