Skip to main content
Log in

Subcellular heterogeneity of mitochondrial function and dysfunction: Evidence obtained by confocal imaging

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Beyond their fundamental role in energy metabolism, mitochondria perform a great variety of other important functions (e.g. in Ca2+ homeostasis, apoptosis, thermogenesis, etc.), thus suggesting their region-specific specializations and intracellular heterogeneity. Although mitochondrial functional heterogeneity has been demonstrated for several cell types, its origin and role under physiological and, in particular, pathophysiological conditions, where the extent of heterogeneity may significantly increase, remain to be elucidated. The present work thus investigated the static and dynamic heterogeneity of mitochondria and mitochondrial function in various cell types in which mitochondria may cope with specific functions including cardiomyocytes, hepatocytes and some cultured carcinoma cells. Modern confocal and two-photon fluorescent microscopy was used for the investigation and direct imaging of region-specific mitochondrial function and heterogeneity. Analysis of the autofluorescence of mitochondrial flavoproteins in hepatocytes and carcinoma cells permitted significant intracellular heterogeneity of mitochondrial redox state to be demonstrated. Comparative homogeneity and clear colocalization of mitochondrial flavoproteins, membrane potential and calcium-sensitive probes were observed in both isolated cardiomyocytes and permeabilized myocardial fibers. After ischemia reperfusion, however, or under conditions of substrate deprivation, significant heterogeneity of all these parameters was detected. Some methodological issues, mechanistic aspects, possible metabolic consequences of mitochondrial functional heterogeneity and its impact under pathological conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Lisa F, Bernardi P: Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem 184: 379–391, 1998

    Article  PubMed  Google Scholar 

  2. Di Lisa F, Menabo R, Canton M, Petronilli V: The role of mitochondria in the salvage and the injury of the ischemic myocardium. Biochim Biophys Acta 1366: 69–78, 1998

    PubMed  Google Scholar 

  3. Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F: Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264: 687–701, 1999

    PubMed  Google Scholar 

  4. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275: 1132–1136, 1997

    PubMed  Google Scholar 

  5. Kroemer G, Reed JC: Mitochondrial control of cell death. Nat Med 6: 513–519, 2000

    PubMed  Google Scholar 

  6. Manneschi L, Federico A: Polarographic analyses of subsarcolemmal and intermyofibrillar mitochondria from rat skeletal and cardiac muscle. J Neurol Sci 128: 151–156, 1995

    Article  PubMed  Google Scholar 

  7. Palmer JW, Tandler B, Hoppel CL: Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252: 8731–8739, 1977

    PubMed  Google Scholar 

  8. Palmer JW, Tandler B, Hoppel CL: Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: Effects of procedural manipulations. Arch Biochem Biophys 236: 691–702, 1985

    Article  PubMed  Google Scholar 

  9. Kuznetsov AV, Mayboroda O, Kunz D, Winkler K, Schubert W, Kunz WS: Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers. J Cell Biol 140: 1091–1099, 1998

    Article  PubMed  Google Scholar 

  10. Lesnefsky EJ, Tandler B, Ye J, Slabe TJ, Turkaly J, Hoppel CL: Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Physiol 273: H1544–H1554, 1997

    PubMed  Google Scholar 

  11. Kunz WS, Kuznetsov AV, Winkler K, Gellerich FN, Neuhof S, Neumann HW: Measurement of fluorescence changes of NAD(P)H and of fluorescent flavoproteins in saponin-skinned human skeletal muscle fibers. Anal Biochem 216: 322–327, 1994

    Article  PubMed  Google Scholar 

  12. Romashko DN, Marban E, O'Rourke B: Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci USA 95: 1618–1623, 1998

    Article  PubMed  Google Scholar 

  13. Appaix F, Kuznetsov AV, Usson Y, Kay L, Andrienko T, Olivares J, Kaambre T, Sikk P, Margreiter R, Saks V: Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol 88: 175–190, 2003

    Article  PubMed  Google Scholar 

  14. Huang S, Heikal AA, Webb WW: Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82: 2811–2825, 2002

    PubMed  Google Scholar 

  15. Collins TJ, Berridge MJ, Lipp P, Bootman MD: Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21: 1616–1627, 2002

    Article  PubMed  Google Scholar 

  16. Trollinger DR, Cascio WE, Lemasters JJ. Mitochondrial calcium transients in adult rabbit cardiac myocytes: Inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)-indicating fluorophores. Biophys J 79: 39–50, 2000

    PubMed  Google Scholar 

  17. Andrienko T, Kuznetsov AV, Kaambre T, Usson Y, Orosco A, Appaix F, Tiivel T, Sikk P, Vendelin M, Margreiter R, Saks VA: Metabolic consequences of functional complexes of mitochondria, myofibrils and sarcoplasmic reticulum in muscle cells. J Exp Biol 2003 (in press)

  18. Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH: Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem 2003 (in press)

  19. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ: Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192: 1001–1014, 2000

    Article  PubMed  Google Scholar 

  20. Navarro-Antolin J, Lopez-Munoz MJ, Klatt P, Soria J, Michel T, Lamas S: Formation of peroxynitrite in vascular endothelial cells exposed to cyclosporine A. FASEB J 15: 1291–1293, 2001

    PubMed  Google Scholar 

  21. Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P: Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J Biol Chem 276: 12035–12040, 2001

    Article  PubMed  Google Scholar 

  22. Quistorff B, Haselgrove JC, Chance B: High spatial resolution readout of 3-D metabolic organ structure: An automated, low-temperature redox ratio-scanning instrument. Anal Biochem 148: 389–400, 1985

    Article  PubMed  Google Scholar 

  23. Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regitz-Zagrosek V, Fleck E, Seppet E: Intracellular energetic units in red muscle cells. Biochem J 356: 643–657, 2001

    Article  PubMed  Google Scholar 

  24. Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A: Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci USA 99: 10156–10161, 2002

    Article  PubMed  Google Scholar 

  25. Hoppel CL, Tandler B, Parland W, Turkaly JS, Albers LD: Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J Biol Chem 257: 1540–1548, 1982

    PubMed  Google Scholar 

  26. Saks VA, Belikova YO, Kuznetsov AV: In vivo regulation of mitochondrial respiration in cardiomyocytes: Specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1074: 302–311, 1991

    PubMed  Google Scholar 

  27. Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova JO, Kesvatera T, Tiivel T: Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol 27: 625–645, 1995

    PubMed  Google Scholar 

  28. Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M, Sahlin K, Kay L, Appaix F, Braun U, Eimre M, Saks VA: Functional complexes of mitochondria with Ca,MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta 1504: 379–395, 2001

    PubMed  Google Scholar 

  29. D'Herde K, De Prest B, Mussche S, Schotte P, Beyaert R, Coster RV, Roels F: Ultrastructural localization of cytochrome c in apoptosis demonstrates mitochondrial heterogeneity. Cell Death Differ 7: 331–337, 2000

    Article  PubMed  Google Scholar 

  30. Hajek P, Villani G, Attardi G: Rate-limiting step preceding cytochrome c release in cells primed for Fas-mediated apoptosis revealed by analysis of cellular mosaicism of respiratory changes. J Biol Chem 276: 606–615, 2001

    Article  PubMed  Google Scholar 

  31. Bernardi P, Petronilli V, Di Lisa F, Forte M: A mitochondrial perspective on cell death. Trends Biochem Sci 26: 112–117, 2001

    Article  PubMed  Google Scholar 

  32. Li C, Jackson RM: Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 282: C227–C241, 2002

    PubMed  Google Scholar 

  33. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P: Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 185: 1481–1486, 1997

    Article  PubMed  Google Scholar 

  34. Vasdev SC, Biro GP, Narbaitz R, Kako KJ: Membrane changes induced by early myocardial ischemia in the dog. Can J Biochem 58: 1112–1119, 1980

    PubMed  Google Scholar 

  35. Hearse DJ: Myocardial protection during ischemia and reperfusion. Mol Cell Biochem 186: 177–184, 1998

    Article  PubMed  Google Scholar 

  36. Steenbergen C, Deleeuw G, Barlow C, Chance B, Williamson JR: Heterogeneity of the hypoxic state in perfused rat heart. Circ Res 41: 606–615, 1977

    PubMed  Google Scholar 

  37. Zuurbier CJ, van Iterson M, Ince C: Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res 44: 488–497, 1999

    Article  PubMed  Google Scholar 

  38. Bowser DN, Minamikawa T, Nagley P, Williams DA: Role of mitochondria in calcium regulation of spontaneously contracting cardiac muscle cells. Biophys J 75: 2004–2014, 1998

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.V., Usson, Y., Leverve, X. et al. Subcellular heterogeneity of mitochondrial function and dysfunction: Evidence obtained by confocal imaging. Mol Cell Biochem 256, 359–365 (2004). https://doi.org/10.1023/B:MCBI.0000009881.01943.68

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000009881.01943.68

Navigation