Skip to main content
Log in

Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Techniques and protocols of assessment of mitochondrial properties are of physiological and physiopathological important significance. A precise knowledge of the advantages and limitations of the different protocols used to investigate the mitochondrial function, is therefore necessary. This report presents examples of how the skinned (or permeabilized) fibers technique could be applied for the polarographic determination of the actual quantitative and qualitative aspects of mitochondrial function in human muscle samples. We described and compared the main available respiration protocols in order to sort out which protocol seems more appropriate for the characterization of mitochondrial properties according to the questions under consideration: quantitative determination of oxidative capacities of a given muscle, characterization of the pattern of control of mitochondrial respiration, or assessment of a mitochondrial defect at the level of the respiratory chain complexes. We showed that while protocol A, using only two levels of the phosphate acceptor adenosine diphosphate (ADP) concentration and the adjunction of creatine, could be used for the determination of quantitative changes in very small amount of muscle samples, the ADP sensitivity of mitochondrial respiration was underestimated by this protocol in muscles with high oxidative capacities. The actual apparent Km for ADP and the role of functional activation of miCK in ATP production and energy transfer in oxidative muscles, are well-assessed by protocol B (in the absence of creatine) together with protocol C (in the presence of creatine) that use increasing concentrations of ADP ranging from 2.5–2000 μM. Protocol D is well-adapted to investigate the potential changes at different levels of the respiratory chain, by the use of specific substrates and inhibitors. As can be seen from the present data and the current review of previous reports in the literature, a standardization of the respiration protocols is needed for useful comparisons between studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saraste M: Oxidative phosphorylation at the fin de siecle. Science 283: 1488–1493, 1999

    Article  PubMed  Google Scholar 

  2. Wallace DC: Mitochondrial diseases in man and mouse. Science 283: 1482–1488, 1999

    Article  PubMed  Google Scholar 

  3. Chance B, Eleff S, Leigh JS Jr, Sokolow D, Sapega A: Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: A gated 31P NMR study. Proc Natl Acad Sci USA 78: 6714–6718, 1981

    PubMed  Google Scholar 

  4. Barstow TJ, Buchthal SD, Zanconato S, Cooper DM: Changes in potential controllers of human skeletal muscle respiration during incremental calf exercise. J Appl Physiol 77: 2169–2176, 1994

    PubMed  Google Scholar 

  5. Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR: Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation 80: 1338–1346, 1989

    PubMed  Google Scholar 

  6. Radda GK, Odoom J, Kemp G, Taylor DJ, Thompson C, Styles P: Assessment of mitochondrial function and control in normal and diseased states. Biochim Biophys Acta 1271: 15–19, 1995

    PubMed  Google Scholar 

  7. Adamopoulos S, Coats AJ, Brunotte F, Arnolda L, Meyer T, Thompson CH, Dunn JF, Stratton J, Kemp GJ, Radda GK et al.: Physical training improves skeletal muscle metabolism in patients with chronic heart failure. J Am Coll Cardiol 21: 1101–1106, 1993

    PubMed  Google Scholar 

  8. Rasmussen HN, Andersen AJ, Rasmussen UF: Optimization of preparation of mitochondria from 25–100 mg skeletal muscle. Anal Biochem 252: 153–159, 1997

    Article  PubMed  Google Scholar 

  9. Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA: Mitochondrial respiratory parameters in cardiac tissue: A novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892: 191–196, 1987

    PubMed  Google Scholar 

  10. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS: Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184: 81–100, 1998

    Article  PubMed  Google Scholar 

  11. Kunz WS, Kuznetsov AV, Schulze W, Eichhorn K, Schild L, Striggow F, Bohnensack R, Neuhof S, Grasshoff H, Neumann HW et al.: Functional characterization of mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers. Biochim Biophys Acta 1144: 46–53, 1993

    PubMed  Google Scholar 

  12. Bergstrom J: Muscle electrolytes in man. Scand J Clin Lab Invest 14: 11–12, 1962

    PubMed  Google Scholar 

  13. Lampert E, Mettauer B, Hoppeler H, Charloux A, Charpentier A, Lonsdorfer J: Structure of skeletal muscle in heart transplant recipients. J Am Coll Cardiol 28: 980–984, 1996

    Article  PubMed  Google Scholar 

  14. Lampert E, Mettauer B, Hoppeler H, Charloux A, Charpentier A, Lonsdorfer J: Skeletal muscle response to short endurance training in heart transplant recipients. J Am Coll Cardiol 32: 420–426, 1998

    Article  PubMed  Google Scholar 

  15. Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R: Oxidative capacity of skeletal muscle in heart failure patients vs. sedentary or active control subjects. J Am Coll Cardiol 38: 947–954, 2001

    Article  PubMed  Google Scholar 

  16. Zoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, Serrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B: Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543: 191–200, 2002

    Article  PubMed  Google Scholar 

  17. Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD: Creatine kinase system in failing and nonfailing human myocardium. Circulation 94: 1894–1901, 1996

    PubMed  Google Scholar 

  18. Caves PK, Stinson EB, Billingham ME, Shumway NE: Transvenous intracardiac biopsy using a new catheter forceps. Heart Lung 4: 69–74, 1975

    PubMed  Google Scholar 

  19. Brooksby IA, Jenkins BS, Davies MJ, Swanton RH, Coltart DJ, Webb-Peploe MM: Left ventricular endomycardial biopsy. I: Description and evaluation of the technique. Cathet Cardiovasc Diagn 3: 115–121, 1977

    PubMed  Google Scholar 

  20. Letellier T, Malgat M, Coquet M, Moretto B, Parrot-Roulaud F, Mazat JP: Mitochondrial myopathy studies on permeabilized muscle fibers. Pediatr Res 32: 17–22, 1992

    PubMed  Google Scholar 

  21. Altschuld RA, Wenger WC, Lamka KG, Kindig OR, Capen CC, Mizuhira V, Vander Heide RS, Brierley GP: Structural and functional properties of adult rat heart myocytes lysed with digitonin. J Biol Chem 260: 14325–14334, 1985

    PubMed  Google Scholar 

  22. Saks VA, Belikova YO, Kuznetsov AV, Khuchua ZA, Branishte TH, Semenovsky ML, Naumov VG: Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy. Am J Physiol 261: 30–38, 1991

    PubMed  Google Scholar 

  23. Lin A, Krockmalnic G, Penman S: Imaging cytoskeleton — mitochondrial membrane attachments by embedment-free electron microscopy of saponin-extracted cells. Proc Natl Acad Sci USA 87: 8565–8569, 1990

    PubMed  Google Scholar 

  24. Christoforides C, Laasberg LH, Hedley-Whyte J: Effect of temperature on solubility of O2 in human plasma. J Appl Physiol 26: 56–60, 1969

    PubMed  Google Scholar 

  25. Tonkonogi M, Harris B, Sahlin K: Mitochondrial oxidative function in human saponin-skinned muscle fibres: Effects of prolonged exercise. J Physiol 510: 279–286, 1998

    Article  Google Scholar 

  26. Walsh B, Tonkonogi M, Sahlin K: Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres. Pflügers Arch 442: 420–425, 2001

    Article  Google Scholar 

  27. Letellier T, Malgat M, Mazat JP: Control of oxidative phosphorylation in rat muscle mitochondria: Implications for mitochondrial myopathies. Biochim Biophys Acta 1141: 58–64, 1993

    PubMed  Google Scholar 

  28. Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R: Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201: 1129–1139, 1998

    PubMed  Google Scholar 

  29. Jackman MR, Willis WT: Characteristics of mitochondria isolated from type I and type IIb skeletal muscle. Am J Physiol 270: C673–C678, 1996

    PubMed  Google Scholar 

  30. Kunz WS, Kudin A, Vielhaber S, Elger CE, Attardi G, Villani G: Flux control of cytochrome c oxidase in human skeletal muscle. J Biol Chem 275: 27741–27745, 2000

    Article  PubMed  Google Scholar 

  31. Kuznetsov AV, Tiivel T, Sikk P, Kaambre T, Kay L, Daneshrad Z, Rossi A, Kadaja L, Peet N, Seppet E, Saks VA: Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur J Biochem 241: 909–915, 1996

    Article  PubMed  Google Scholar 

  32. Gnaiger E, Steinlechner-Maran R, Mendez G, Eberl T, Margreiter R: Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27: 583–596, 1995

    Article  PubMed  Google Scholar 

  33. Tonkonogi M, Walsh B, Tiivel T, Saks V, Sahlin K: Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise. Pflügers Arch 437: 562–568, 1999

    Article  Google Scholar 

  34. Sperl W, Skladal D, Gnaiger E, Wyss M, Mayr U, Hager J, Gellerich FN: High resolution respirometry of permeabilized skeletal muscle fibers in the diagnosis of neuromuscular disorders. Mol Cell Biochem 174: 71–78, 1997

    Article  PubMed  Google Scholar 

  35. Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS: Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156: 65–72, 1998

    Article  PubMed  Google Scholar 

  36. Echaniz-Laguna A, Zoll J, Ribera F, Tranchant C, Warter JM, Lonsdorfer J, Lampert E: Mitochondrial respiratory chain function in skeletal muscle of ALS patients. Ann Neurol 52: 623–627, 2002

    Article  PubMed  Google Scholar 

  37. Ribera F, N'Guessan B, Zoll J, Fortin D, Serrurier B, Mettauer B, Bigard X, Ventura-Clapier R, Lampert E: Mitochondrial electron transport chain function is enhanced in inspiratory muscles of COPD patients. Am J Respir Crit Care Med 167: 873–879, 2003

    Article  PubMed  Google Scholar 

  38. Kunz WS, Kuznetsov AV, Gellerich FN: Mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers is stimulated by caffeine. FEBS Lett 323: 188–90, 1993

    Article  PubMed  Google Scholar 

  39. Khuchua Z, Belikova Y, Kuznetsov AV, Gellerich FN, Schild L, Neumann HW, Kunz WS: Caffeine and Ca2+ stimulate mitochondrial oxidative phosphorylation in saponin-skinned human skeletal muscle fibers due to activation of actomyosin ATPase. Biochim Biophys Acta 1188: 373–379, 1994

    PubMed  Google Scholar 

  40. Weibel ER, Taylor CR, Hoppeler H: Variations in function and design: Testing symmorphosis in the respiratory system. Respir Physiol 87: 325–348, 1992

    Article  PubMed  Google Scholar 

  41. Weibel ER, Taylor CR, Hoppeler H: The concept of symmorphosis: A testable hypothesis of structure-function relationship. Proc Natl Acad Sci USA 88: 10357–10361, 1991

    PubMed  Google Scholar 

  42. Winkler K, Kuznetsov AV, Lins H, Kirches E, von Bossanyi P, Dietzmann K, Frank B, Feistner H, Kunz WS: Laser-excited fluorescence studies of mitochondrial function in saponin-skinned skeletal muscle fibers of patients with chronic progressive external ophthalmoplegia. Biochim Biophys Acta 1272: 181–184, 1995

    PubMed  Google Scholar 

  43. Kunz WS, Winkler K, Kuznetsov AV, Lins H, Kirches E, Wallesch CW: Detection of mitochondrial defects by laser fluorimetry. Mol Cell Biochem 174: 97–100, 1997

    Article  PubMed  Google Scholar 

  44. Kuznetsov AV, Winkler K, Wiedemann FR, von Bossanyi P, Dietzmann K, Kunz WS: Impaired mitochondrial oxidative phosphorylation in skeletal muscle of the dystrophin-deficient mdx mouse. Mol Cell Biochem 183: 87–96, 1998

    Article  PubMed  Google Scholar 

  45. Sharov VG, Todor AV, Silverman N, Goldstein S, Sabbah HN: Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 32: 2361–2367, 2000

    Article  PubMed  Google Scholar 

  46. Rasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J: Aerobic metabolism of human quadriceps muscle: In vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab 280: E301–E307, 2001

    PubMed  Google Scholar 

  47. Tonkonogi M, Sahlin K: Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: Effect of training status. Acta Physiol Scand 161: 345–353, 1997

    Article  PubMed  Google Scholar 

  48. Territo PR, French SA, Dunleavy MC, Evans FJ, Balaban RS: Calcium activation of heart mitochondrial oxidative phosphorylation: Rapid kinetics of mVO2, NADH, AND light scattering. J Biol Chem 276: 2586–2599, 2001

    Article  PubMed  Google Scholar 

  49. Territo PR, Mootha VK, French SA, Balaban RS: Ca(2+) activation of heart mitochondrial oxidative phosphorylation: Role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol 278: C423–C435, 2000

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoit, N., Zoll, J., Ribera, F. et al. Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles. Mol Cell Biochem 256, 267–280 (2004). https://doi.org/10.1023/B:MCBI.0000009874.14649.ca

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000009874.14649.ca

Navigation