Skip to main content
Log in

Production in two-liter beverage bottles of proteins for NMR structure determination labeled with either 15N- or 13C-15N

  • Published:
Journal of Structural and Functional Genomics

Abstract

The use of 2-L polyethylene terephthalate beverage bottles as a bacterial culture vessel has been recently introduced as an enabling technology for high-throughput structural biology [Sanville Millard, C. et al., 2003. Protein Express. Purif. 29, 311–320]. In the article following this one [Stols et al., this issue, pp. 95–102], this approach was elaborated for selenomethionine labeling used for multiwavelength anomalous dispersion phasing in the X-ray crystallographic determinations of protein structure. Herein, we report an effective and reproducible schedule for uniform 15N- and 13C-labeling of recombinant proteins in 2-L beverage bottles for structural determination by NMR spectroscopy. As an example, three target proteins selected from Arabidopsis thaliana were expressed in Escherichia coli Rosetta (DE3)/pLysS from a T7-based expression vector, purified, and characterized by electrospray ionization mass spectrometry and NMR analysis by 1H-15N heteronuclear single quantum correlation spectroscopy. The results show that expressions in the unlabeled medium provide a suitable control for estimation of the level of production of the labeled protein. Mass spectral characterizations show that the purified proteins contained a level of isotopic incorporation equivalent to the isotopically labeled materials initially present in the growth medium, while NMR analysis of the [U-15N]-labeled proteins provided a convenient method to assess the solution state properties of the target protein prior to production of a more costly double-labeled sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heinemann, U., Frevert, J., Hofmann, K., Illing, G., Maurer, C., Oschkinat, H. and Saenger, W. (2000) Prog. Biophys. Mol. Biol. 73, 347–362.

    Article  PubMed  Google Scholar 

  2. Ausubel, F.M. (2002) Plant Physiol. 129, 394–437.

    Article  Google Scholar 

  3. Ding, H.T., Ren, H., Chen, Q., Fang, G., Li, L.F., Li, R., Wang, Z., Jia, X.Y., Liang, Y.H., Hu, M.H., Li, Y., Luo, J.C., Gu, X.C., Su, X.D., Luo, M. and Lu, S.Y. (2002) Acta Crystallogr. D Biol. Crystallogr. 58, 102–108.

    Article  Google Scholar 

  4. Doyle, S.A., Murphy, M.B., Massi, J.M. and Richardson, P.M. (2002) J. Proteome Res. 1, 531–536.

    Article  PubMed  Google Scholar 

  5. Sanville Millard, C., Stols, L., Quartey, P., Kim, Y., Dementieva, I. and Donnelly, M.I. (2003) Protein Express. Purif. 29, 311–320.

    Google Scholar 

  6. Kennedy, M.A., Montelione, G.T., Arrowsmith, C.H. and Markley, J.L. (2002) J. Struct. Funct. Genom. 2, 155–169.

    Article  Google Scholar 

  7. Kay, L., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc. 114, 10663–10665.

    Article  Google Scholar 

  8. Rehm, T., Huber, R. and Holak, T.A. (2002) Structure (Camb.) 10, 1613–1681.

    Article  Google Scholar 

  9. McIntosh, L.P. and Dahlquist, F.W. (1990) Q. Rev. Biophys. 23, 1–38.

    PubMed  Google Scholar 

  10. Ikura, M., Krinks, M., Torchia, D.A. and Bax, A. (1990) FEBS Lett. 266, 155–158.

    Article  PubMed  Google Scholar 

  11. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1993) Biochim. Biophys. Acta 1164, 36–46.

    PubMed  Google Scholar 

  12. Reilly, D. and Fairbrother, W.J. (1994) J. Biomol. NMR 4, 459–462.

    Article  PubMed  Google Scholar 

  13. Cai, M., Huang, Y., Sakaguchi, K., Clore, G.M., Gronenborn, A.M. and Craigie, R. (1998) J. Biomol. NMR 11, 97–102.

    Article  PubMed  Google Scholar 

  14. Studier, F.W. (1991) J. Mol. Biol. 219, 37–44.

    Article  PubMed  Google Scholar 

  15. Dubendorff, J.W. and Studier, F.W. (1991) J. Mol. Biol. 219, 45–59.

    Article  PubMed  Google Scholar 

  16. Pan, S.H. and Malcolm, B.A. (2000) BioTechniques 29, 1234–1238.

    PubMed  Google Scholar 

  17. Dotsch, V. and Wagner, G.Y. (1998) Curr. Opin. Struct. Biol. 8, 619–623.

    Article  PubMed  Google Scholar 

  18. Marley, J., Lu, M. and Bracken, C. (2001) J. Biomol. NMR 20, 71–75.

    Article  PubMed  Google Scholar 

  19. Studts, J.M. and Fox, B.G. (1999) Protein Express. Purif. 16, 109–119.

    Article  Google Scholar 

  20. Weber, D.J., Gittis, A.G., Mullen, G.P., Abeygunawardana, C., Lattman, E.E. and Mildvan, A.S. (1992) Proteins 4, 275–287.

    Article  Google Scholar 

  21. Sambrook, J., Fritsch, E.F. and Maniatis, T. (2001) In Molecular Cloning, A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  22. Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun. 113, 967–974.

    Article  PubMed  Google Scholar 

  23. Stols, L., Sanville Millard, C., Dementieva, I. and Donnelly, M.I. (2004) J. Struct. Funct. Genom., 5, 95–102 (this issue).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Frederick, R., Seder, K. et al. Production in two-liter beverage bottles of proteins for NMR structure determination labeled with either 15N- or 13C-15N. J Struct Func Genom 5, 87–93 (2004). https://doi.org/10.1023/B:JSFG.0000029205.65813.42

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSFG.0000029205.65813.42

Navigation