Skip to main content
Log in

The Percolation Transition in the Zero-Temperature Domany Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze a deterministic cellular automaton σ =(σ n:n≥0) corresponding to the zero-temperature case of Domany's stochastic Ising ferromagnet on the hexagonal lattice \(\mathbb{N}\). The state space \(\mathcal{S}_\mathbb{H} = \left\{ { - 1, + 1} \right\}^\mathbb{H}\) consists of assignments of −1 or +1 to each site of \(\mathbb{H}\) and the initial state \(\sigma ^0 = \left\{ {\sigma _{^x }^0 } \right\}_{x \in \mathbb{H}}\) is chosen randomly with P(σ 0 x=+1)=p∈[0,1]. The sites of \(\mathbb{H}\) are partitioned in two sets \(\mathcal{A}\) and \(\mathcal{B}\) so that all the neighbors of a site x in \(\mathcal{A}\) belong to \(\mathcal{B}\) and vice versa, and the discrete time dynamics is such that the σ x 's with \({x \in \mathcal{A}}\) (respectively, \(\mathcal{B}\)) are updated simultaneously at odd (resp., even) times, making σ x agree with the majority of its three neighbors. In ref. 1 it was proved that there is a percolation transition at p=1/2 in the percolation models defined by σ n, for all times n∈[1,∞]. In this paper, we study the nature of that transition and prove that the critical exponents β, ν, and η of the dependent percolation models defined by σ n, n∈[1,∞], have the same values as for standard two-dimensional independent site percolation (on the triangular lattice).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Camia, C. M. Newman, and V. Sidoravicius, Approach to fixation for zero-temperature stochastic Ising models on the hexagonal lattice, in In and Out of Equilibrium: Probability with a Physics Flavor, V. Sidoravicius, ed., Progress in Probability, Vol. 51 (Birkhä;user, 2002), pp. 163–183.

  2. E. Domany, Exact results for two-and three-dimensional Ising and Potts models, Phys. Rev. Lett. 52:871–874 (1984).

    Google Scholar 

  3. C. D. Howard and C. M. Newman, The percolation transition for the zero-temperature stochastic Ising model on the hexagonal lattice, J. Stat. Phys. 111:57–72 (2003).

    Google Scholar 

  4. B. Nienhuis, private communication (2001).

  5. F. Camia, C. M. Newman, and V. Sidoravicius, Cardy’;s formula for some dependent percolation models, Bull. Brazilian Math. Soc. 33:147–156 (2002).

    Google Scholar 

  6. F. Camia, C. M. Newman, and V. Sidoravicius, A particular bit of universality: Scaling limits of some dependent percolation models, Commun. Math. Phys. to appear.

  7. J. L. Cardy, Critical percolation in finite geometries, J. Phys. A 25:L201–L206 (1992).

    Google Scholar 

  8. S. Smirnov, Critical percolation in the plane: Conformal invariance, Cardy’;s formula, scaling limits, C. R. Acad. Sci. Paris 333:239–244 (2001).

    Google Scholar 

  9. O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118:221–288 (2000).

    Google Scholar 

  10. S. Smirnov and W. Werner, Critical exponents for two-dimensional percolation, Math. Rev. Lett. 8:279–744 (2001).

    Google Scholar 

  11. F. Camia, E. De Santis, and C. M. Newman, Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model, Ann. Appl. Probab. 12:565–580 (2002).

    Google Scholar 

  12. L. R. Fontes, R. H. Schonmann, and V. Sidoravicius, Stretched exponential fixation in stochastic Ising models at zero temperature, Commun. Math. Phys. 228:495–518 (2002).

    Google Scholar 

  13. A. Gandolfi, C. M. Newman, and D. L. Stein, Zero-temperature dynamics of ± J spin glasses and related models, Commun. Math. Phys. 214:373–387 (2000).

    Google Scholar 

  14. S. Nanda, C. M. Newman, and D. L. Stein, Dynamics of Ising spin systems at zero temperature, in On Dobrushin’;s Way (from Probability Theory to Statistical Mechanics), R. Minlos, S. Shlosman, and Y. Suhov, eds. (AMS, Providence, 2000).

    Google Scholar 

  15. C. M. Newman and D. L. Stein, Blocking and persistence in zero-temperature dynamics of homogeneous and disordered Ising models, Phys. Rev. Lett. 82:3944–3947 (1999).

    Google Scholar 

  16. C. M. Newman and D. L. Stein, Equilibrium pure states and nonequilibrium chaos, J. Stat. Phys. 94:709–722 (1999).

    Google Scholar 

  17. C. M. Newman and D. L. Stein, Zero-temperature dynamics of Ising spin systems following a deep quench: results and open problems, Physica A 279:156–168 (2000).

    Google Scholar 

  18. C. D. Howard, Zero-temperature Ising spin dynamics on the homogeneous tree of degree three, J. Appl. Probab. 37:736–747 (2000).

    Google Scholar 

  19. J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata, J. Stat. Phys. 59:117–170 (1990).

    Google Scholar 

  20. A. J. Bray, Theory of phase ordering kinetics, Adv. Phys. 43:565–580 (1994).

    Google Scholar 

  21. G. R. Grimmett, Percolation, second edition (Springer, Berlin, 1999).

    Google Scholar 

  22. G. F. Lawer, O. Schramm, and W. Werner, One-arm exponent for critical 2D percolation, Electr. J. Probab. 7:000-000 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camia, F., Newman, C.M. The Percolation Transition in the Zero-Temperature Domany Model. Journal of Statistical Physics 114, 1199–1210 (2004). https://doi.org/10.1023/B:JOSS.0000013965.36344.75

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000013965.36344.75

Navigation