Skip to main content
Log in

Extreme Secretion: Protein Translocation Across the Archaeal Plasma Membrane

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In all three domains of life, extracytoplasmic proteins must overcome the hurdle presented by hydrophobic, lipid-based membranes. While numerous aspects of the protein translocation process have been well studied in bacteria and eukarya, little is known about how proteins cross the membranes of archaea. Analysis to date suggests that archaeal protein translocation is a mosaic of bacterial, eukaryal, and archaeal features, as indeed is much of archaeal biology. Archaea encode homologues of selected elements of the bacterial and eukaryal translocation machines, yet lack other important components of these two systems. Other aspects of the archaeal translocation process appear specific to this domain, possibly related to the extreme environmental conditions in which archaea thrive. In the following, current understanding of archaeal protein translocation is reviewed, as is recent progess in reconstitution of the archaeal translocation process in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimaru, J., Matsuyama, S., Tokuda, H., and Mizushima, S. (1991). Proc. Natl. Acad. Sci. U.S.A. 88, 6545-6549.

    Google Scholar 

  • Albers, S. V., and Driessen, A. M. (2002). Arch. Microbiol. 177, 209-216.

    Google Scholar 

  • Arkowitz, R. A., and Wickner, W. (1994). EMBO J. 13, 954-963.

    Google Scholar 

  • Arndt, E. (1992). Biochim. Biophys. Acta 1130, 113-116.

    Google Scholar 

  • Auer, J., Spicker, G., and Bock, A. (1991). Biochimie 73, 683-688.

    Google Scholar 

  • Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000). Science 289, 905-920.

    Google Scholar 

  • Brady, S. L., Eichler, J., and Jarrell, K. F. (2003). Protein Sci. 12, 1833-1843.

    Google Scholar 

  • Bayley, S. T., and Griffiths, E. (1968). Biochemistry 7, 2249-2256.

    Google Scholar 

  • Becher, B., and Muller, V. (1994). J. Bacteriol. 176, 2543-2550.

    Google Scholar 

  • Berks, B. C. (1996). Mol. Microbiol. 22, 393-404.

    Google Scholar 

  • Berks, B. C., Sargent, F., De Leeuw, E., Hinsley, A. P., Stanley, N. R., Jack, R. L., Buchanan, G., and Palmer, T. (2000). Biochim. Biophys. Acta 1459, 325-330.

    Google Scholar 

  • Bhuiyan, S. H., Gowda, K., Hotokezaka, H., and Zwieb, C. (2000). Nucleic Acids Res. 28, 1365-1373.

    Google Scholar 

  • Blobel, G., and Dobberstein, B. (1975). J. Cell Biol. 67, 835-851.

    Google Scholar 

  • Bogomolni, R. A., Taylor, M. E., and Stoeckenius, W. (1984). Proc. Natl. Acad. Sci. U.S.A. 81, 5408-5411.

    Google Scholar 

  • Bogsch, E., Brink, S., and Robinson, C. (1997). EMBO J. 16, 3851-3859.

    Google Scholar 

  • Bogsch, E. G., Sargent, F., Stanley, N. R., Berks, B. C., Robinson, C., and Palmer, T. (1998). J. Biol. Chem. 273, 18003-18006.

    Google Scholar 

  • Bolhuis, A. (2002). Microbiology 148, 3335-3346.

    Google Scholar 

  • Bolhuis, A., Broekhuizen, C. P., Sorokin, A., van Roosmalen, M. L., Venema, G., Bron, S., Quax, W. J., and van Dijl, J. M. (1998). J. Biol. Chem. 273, 21217-21224.

    Google Scholar 

  • Brock, I. W., Mills, J. D., Robinson, D., and Robinson, C. (1995). J. Biol. Chem. 270, 1657-1662.

    Google Scholar 

  • Brundage, L., Fimmel, C. J., Mizushima, S., and Wickner, W. (1992). J. Biol. Chem. 267, 4166-4170.

    Google Scholar 

  • Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J., and Wickner, W. (1990). Cell 62, 649-657.

    Google Scholar 

  • Cammarano, P., Teichner, A., Chinali, G., Londei, P., de Rosa, M., Gambacorta, A., and Nicolaus, B. (1982). FEBS Lett. 148, 255-259.

    Google Scholar 

  • Cao, T. B., and Saier, M. H., Jr. (2003). Biochim. Biophys. Acta 1609, 115

    Google Scholar 

  • Chen, M., Samuelson, J. C., Jiang, F., Muller, M., Kuhn, A., and Dalbey, R. E. (2002). J. Biol. Chem. 277, 7670-7675.

    Google Scholar 

  • Chung, Y. J., Krueger, C., Metzgar, D., and Saier, M. H., Jr. (2001). J. Bacteriol. 183, 1012-

    Google Scholar 

  • Cline, K., Ettinger, W. F., and Theg, S. M. (1992). J. Biol. Chem. 267, 2688-2696.

    Google Scholar 

  • Condo, I., Ciammaruconi, A., Benelli, D., Ruggero, D., and Londei, P. (1999). Mol. Microbiol. 34, 377-384.

    Google Scholar 

  • Cristobal, S., de Gier, J. W., Nielsen, H., and von Heijne, G. (1999). EMBO J. 18, 2982-2990.

    Google Scholar 

  • Dalbey, R. E., Lively, M. O., Bron, S., and van Dijl, J. M. (1997). Protein Sci. 6, 1129-1138.

    Google Scholar 

  • Dale, H., Angevine, C. M., and Krebs, M. P. (2000). Proc. Natl. Acad. Sci. U.S.A. 97, 7847-7852.

    Google Scholar 

  • Dale, H., and Krebs, M. P. (1999). J. Biol. Chem. 274, 22693-22698.

    Google Scholar 

  • De Rosa, M., and Gambacorta, A. (1988). Prog. Lipid Res. 27, 153-175.

    Google Scholar 

  • de Vrije, T., de Swart, R. L., Dowhan, W., Tommassen, J., and de Kruijff, B. (1988). Nature 334, 173-175.

    Google Scholar 

  • Diener, J. L., and Wilson, C. (2000). Biochemistry 39, 12862-12874.

    Google Scholar 

  • Dilks, K., Rose, R. W., Hartmann, E., and Pohlschroder, M. (2003). J. Bacteriol. 185, 1478-1483.

    Google Scholar 

  • Douville, K., Leonard, M., Brundage, L., Nishiyama, K., Tokuda, H., Mizushima, S., and Wickner, W. (1994). J. Biol. Chem. 269, 18705-18707.

    Google Scholar 

  • Duffner, F., Bertoldo, C., Andersen, J. T., Wagner, K., and Antranikian, G. (2000). J. Bacteriol. 182, 6331-6338.

    Google Scholar 

  • Duong, F., and Wickner, W. (1997a). EMBO J. 16, 2756-2768.

    Google Scholar 

  • Duong, F., and Wickner, W. (1997b). EMBO J. 16, 4871-4879.

    Google Scholar 

  • Economou, A., Pogliano, J. A., Beckwith, J., Oliver, D. B., and Wickner, W. (1995). Cell 83, 1171-1181.

    Google Scholar 

  • Eichler, J. (2000). Eur. J. Biochem. 267, 3402-3412.

    Google Scholar 

  • Eichler, J. (2002). J. Mol. Evol. 54, 411-415.

    Google Scholar 

  • Eichler, J. (2003). Mol. Phylogenet. Evol. 27, 504-509.

    Google Scholar 

  • Eichler, J., and Moll, R. (2001). Trends Microbiol. 9, 130-136.

    Google Scholar 

  • Eichler, J., and Zwieb, C. (2002). Archaea 1, 27-34.

    Google Scholar 

  • Elferink, M. G., de Wit, J. G., Demel, R., Driessen, A. J., and Konings, W. N. (1992). J. Biol. Chem. 267, 1375-1381.

    Google Scholar 

  • Elferink, M. G., de Wit, J. G., Driessen, A. J., and Konings, W. N. (1993). Eur. J. Biochem. 214, 917-925.

    Google Scholar 

  • Elferink, M. G., de Wit, J. G., Driessen, A. J., and Konings, W. N. (1994). Biochim. Biophys. Acta 1193, 247-254.

    Google Scholar 

  • Elhardt, D., and Bock, A. (1982). Mol. Gen. Genet. 188, 128-134.

    Google Scholar 

  • Faguy, D. M., Jarrell, K. F., Kuzio, J., and Kalmokoff, M. L. (1994). Can. J. Microbiol. 40, 67-71.

    Google Scholar 

  • Gleissner, M., Elferink, M. G., Driessen, A. J., Konings, W. N., Anemuller, S., and Schafer, G. (1994). Eur. J. Biochem. 224, 983-990.

    Google Scholar 

  • Gorlich, D., and Rapoport, T. A. (1993). Cell 75, 615-630.

    Google Scholar 

  • Grill, S., Gualerzi, C. O., Londei, P., and Blasi, U. (2000). EMBO J. 19, 4101-4110.

    Google Scholar 

  • Gropp, R., Gropp, F., and Betlach, M. C. (1992). Proc. Natl. Acad. Sci. U.S.A. 89, 1204-1208.

    Google Scholar 

  • Gropp, R., and Oesterhelt, D. (1989). FEBS Lett. 259, 5-9.

    Google Scholar 

  • Hainzl, T., Huang, S., and Sauer-Eriksson, A. E. (2002). Nature 417, 767-771.

    Google Scholar 

  • Hanada, M., Nishiyama, K. I., Mizushima, S., and Tokuda, H. (1994). J. Biol. Chem. 269, 23625-23631.

    Google Scholar 

  • Harano, T., Nose, S., Uezu, R., Shimizu, N., and Fujiki, Y. (2001). Biochem. J. 1, 157-165.

    Google Scholar 

  • Hartmann, E., Sommer, T., Prehn, S., Gorlich, D., Jentsch, S., and Rapoport, T. A. (1994). Nature 367, 654-657.

    Google Scholar 

  • Hell, K., Neupert, W., and Stuart, R. A. (2001). EMBO J. 20, 1281-1288.

    Google Scholar 

  • Hendrick, J. P., and Wickner, W. (1991). J. Biol. Chem. 266, 24596-24600.

    Google Scholar 

  • Hojeberg, B., Lind, C., and Khorana, H. G. (1982). J. Biol. Chem. 257, 1690-1694.

    Google Scholar 

  • Horlacher, R., Xavier, K. B., Santos, H., DiRuggiero, J., Kossmann, M., and Boos, W. (1998). J. Bacteriol. 180, 680-689.

    Google Scholar 

  • Huang, K. S., Bayley, H., and Khorana, H. G. (1980). Proc. Natl. Acad. Sci. U.S.A. 77, 323-327.

    Google Scholar 

  • In't Veld, G., Elferink, M. G., Driessen, A. J., and Konings, W. N. (1992). Biochemistry 31, 12493-12499.

    Google Scholar 

  • Irihimovitch, V., and Eichler, J. (2003). J. Biol. Chem. 278, 12881-12887.

    Google Scholar 

  • Irihimovitch, V., Ring, G., Elkayam, T., Konrad, Z., and Eichler, J. (2003). Extremophiles 7, 71-77.

    Google Scholar 

  • Joly, J. C., and Wickner, W. (1993). EMBO J. 12, 255-263.

    Google Scholar 

  • Jorgensen, S., Vorgias, C. E., and Antranikian, G. (1997). J. Biol. Chem. 272, 16335-16342.

    Google Scholar 

  • Kalies, K. U., Rapoport, T. A., and Hartmann, E. (1998). J. Cell Biol. 141, 887-894.

    Google Scholar 

  • Kates, M. (1993). Experientia 49, 1027-1036.

    Google Scholar 

  • Kath, T., and Schäfer, G. (1995). Biochim. Biophys. Acta 1264, 155-158.

    Google Scholar 

  • Keenan, R. J., Freymann, D. M., Stroud, R. M., and Walter, P. (2001). Annu. Rev. Biochem. 70, 755-775.

    Google Scholar 

  • Kessel, M., Buhle, E. L., Jr., Cohen, S., and Aebi, U. (1988). J. Ultrastruct. Mol. Struct. Res. 100

    Google Scholar 

  • Kinch, L. N., Saier, M. H., Jr., and Grishin, N. V. (2002). Trends Biochem. Sci. 27, 17

    Google Scholar 

  • Klink, F., Schumann, H., and Thomsen, A. (1983). FEBS Lett. 155, 173-177.

    Google Scholar 

  • Koga, Y., Nishihara, M., Morii, H., and Akagawa-Matsushita, M. (1993). Microbiol. Rev. 57, 164-182.

    Google Scholar 

  • Komatsu, H., and Chong, P. L. (1998). Biochemistry 37, 107-115.

    Google Scholar 

  • Koshland, D., and Botstein, D. (1982). Cell 30, 893-902.

    Google Scholar 

  • Krebs, M. P., and Isenbarger, T. A. (2000). Biochim. Biophys. Acta 1460, 15-26.

    Google Scholar 

  • Kusters, R., Breukink, E., Gallusser, A., Kuhn, A., and de Kruijff, B. (1994). J. Biol. Chem. 269, 1560-1563.

    Google Scholar 

  • Kusters, R., Dowhan, W., and de Kruijff, B. (1991). J. Biol. Chem. 266, 8659-8662.

    Google Scholar 

  • Lill, R., Dowhan, W., and Wickner, W. (1990). Cell 60, 271-280.

    Google Scholar 

  • Londei, P., Altamura, S., Cammarano, P., and Petrucci, L. (1986). Eur. J. Biochem. 157, 455-462.

    Google Scholar 

  • Luirink, J., Samuelsson, T., and de Gier, J. W. (2001). FEBS Lett. 50, 1-5.

    Google Scholar 

  • Macara, I. G. (2001). Microbiol. Mol. Biol. Rev. 65, 570-594.

    Google Scholar 

  • Macario, A. J., Lange, M., Ahring, B. K., and de Macario, E. C. (1999). Microbiol. Mol. Biol. Rev. 63, 923-967.

    Google Scholar 

  • Maeshima, H., Okuno, E., Aimi, T., Morinaga, T., and Itoh, T. (2001). FEBS Lett. 507, 336-340.

    Google Scholar 

  • Manting, E. H., and Driessen, A. J. (2000). Mol. Microbiol. 37, 226-238.

    Google Scholar 

  • Matlack, K. E., Mothes, W., and Rapoport, T. A. (1998). Cell 92, 381-390.

    Google Scholar 

  • Matsumoto, K. (2001). Mol. Microbiol. 39, 1427-1433.

    Google Scholar 

  • Matsuyama, S., Fujita, Y., and Mizushima, S. (1993). EMBO J. 12, 265-270.

    Google Scholar 

  • Matsuyama, S., Fujita, Y., Sagara, K., and Mizushima, S. (1992). Biochim. Biophys. Acta 1122, 77-84.

    Google Scholar 

  • Moll, R. G. (2004). J. Bioenerg. Biomembr. 36(1), 47-53.

    Google Scholar 

  • Moore, M., Harrison, M. S., Peterson, E. C., and Henry, R. (2000). J. Biol. Chem. 275, 1529-1532.

    Google Scholar 

  • Morag, E., Lapidot, A., Govorko, D., Lamed, R., Wilchek, M., Bayer, E. A., and Shoham, Y. (1995). Appl. Environ. Microbiol. 61, 1980-1986.

    Google Scholar 

  • Mori, H., and Ito, K. (2001). Trends Microbiol. 9, 494-500.

    Google Scholar 

  • Mothes, W., Prehn, S., and Rapoport, T. A. (1994). EMBO J. 13, 3973-3982.

    Google Scholar 

  • Murphy, C. K., and Beckwith, J. (1994). Proc. Natl. Acad. Sci. U.S.A. 91, 2557-2561.

    Google Scholar 

  • Ngosuwan, J., Wang, N. M., Fung, K. L., and Chirico, W. J. (2003). J. Biol. Chem. 278, 7034-7042.

    Google Scholar 

  • Nielsen, H., Brunak, S., and von Heijne, G. (1999). Protein Eng. 12, 3-9.

    Google Scholar 

  • Ninio, S., and Schuldiner, S. (2003). J. Biol. Chem. 278, 12000-12005.

    Google Scholar 

  • Nishiyama, K., Hanada, M., and Tokuda, H. (1994). EMBO J. 13, 3272-3277.

    Google Scholar 

  • Nishiyama, K., Mizushima, S., and Tokuda, H. (1993). EMBO J. 12, 3409-3415.

    Google Scholar 

  • Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000). Science 289, 920-930.

    Google Scholar 

  • Nouwen, N., van der Laan, M., and Driessen, A. J. (2001). FEBS Lett. 508, 103-106.

    Google Scholar 

  • Ortenberg, R., and Mevarech, M. (2000). J. Biol. Chem. 275, 22839-22846.

    Google Scholar 

  • Oubridge, C., Kuglstatter, A., Jovine, L., and Nagai, K. (2002). Mol. Cell 9, 1251-1261.

    Google Scholar 

  • Paetzel, M., Dalbey, R. E., and Strynadka, N. C. (1998). Nature 396, 186-190.

    Google Scholar 

  • Paetzel, M., Dalbey, R. E., and Strynadka, N. C. (2000). Pharmacol. Ther. 87, 27-49.

    Google Scholar 

  • Pogliano, J. A., and Beckwith, J. (1994). EMBO J. 13, 554-561.

    Google Scholar 

  • Pohlschroder, M., Prinz, W. A., Hartmann, E., and Beckwith, J. (1997). Cell 91, 563-566.

    Google Scholar 

  • Qi, H. Y., Hyndman, J. B., and Bernstein, H. D. (2002). J. Biol. Chem. 277, 51077-51083.

    Google Scholar 

  • Randall, L. L. (1983). Cell 33, 231-240.

    Google Scholar 

  • Rapoport, T. A., Jungnickel, B., and Kutay, U. (1996). Annu. Rev. Biochem. 65, 271-303.

    Google Scholar 

  • Rapoport, T. A., Matlack, K. E., Plath, K., Misselwitz, B., and Staeck, O. (1999). Biol. Chem. 380, 1143-1150.

    Google Scholar 

  • Rensing, S. A., and Maier, U. G. (1994). Mol. Phylogenet. Evol. 3, 187-191.

    Google Scholar 

  • Rial, D. V., Arakaki, A. K., and Ceccarelli, E. A. (2000). Eur. J. Biochem. 267, 6239-6248.

    Google Scholar 

  • Rietveld, A. G., Koorengevel, M. C., and de Kruijff, B. (1995). EMBO J. 14, 5506-5513.

    Google Scholar 

  • Ring, G., and Eichler, J. (2001). J. Membr. Biol. 183, 195-204.

    Google Scholar 

  • Robinson, C., and Bolhuis, A. (2001). Nat. Rev. Mol. Cell Biol. 2, 350-356.

    Google Scholar 

  • Rose, R. W., Bruser, T., Kissinger, J. C., and Pohlschroder, M. (2002). Mol. Microbiol. 45, 943-950.

    Google Scholar 

  • Ruggero, D., Creti, R., and Londei, P. (1993). FEMS Microbiol. Lett. 107, 89-94.

    Google Scholar 

  • Samuelson, J. C., Chen, M., Jiang, F., Moller, I., Wiedmann, M., Kuhn, A., Phillips, G. J., and Dalbey, R. E. (2000). Nature 406, 637-641.

    Google Scholar 

  • Sanz, J. L., Marín, I., Balboa, M. A., Ureña, D., and Amils, R. (1988). Biochemistry 27, 8194-8199.

    Google Scholar 

  • Saruyama, H., and Nierhaus, K. (1985). FEBS Lett. 183, 390-394.

    Google Scholar 

  • Schafer, G., Engelhard, M., and Muller, V. (1999). Microbiol. Mol. Biol. Rev. 63, 570-620.

    Google Scholar 

  • Scotti, P. A., Urbanus, M. L., Brunner, J., de Gier, J. W., von Heijne, G., van der Does, C., Driessen, A. J., Oudega, B., and Luirink, J. (2000). EMBO J. 19, 542-549.

    Google Scholar 

  • Seehra, J. S., and Khorana, H. G. (1984). J. Biol. Chem. 259, 4187-4193.

    Google Scholar 

  • Smith, J. D., and Robinson, A. S. (2002). Biotechnol. Bioeng. 79, 713-723.

    Google Scholar 

  • Sprott, G. D. (1992). J. Bioenerg. Biomembr. 24, 555-566.

    Google Scholar 

  • Sumper, M., Berg, E., Mengele, R., and Strobel, I. (1990). J. Bacteriol. 172, 7111-7118.

    Google Scholar 

  • Tjalsma, H., Bolhuis, A., van Roosmalen, M. L., Wiegert, T., Schumann, W., Broekhuizen, C. P., Quax, W. J., Venema, G., Bron, S., and van Dijl, J. M. (1998). Genes Dev. 12, 2318-2331.

    Google Scholar 

  • Tozik, I., Huang, Q., Zwieb, C., and Eichler, J. (2002). Nucleic Acids Res. 30, 4166-4175.

    Google Scholar 

  • Tseng, T. T., Gratwick, K. S., Kollman, J., Park, D., Nies, D. H., Goffeau, A., and Saier, M. H., Jr. (1999). J. Mol. Microbiol. Biotechnol. 1, 107

    Google Scholar 

  • Ulbrandt, N. D., Newitt, J. A., and Bernstein, H. D. (1997). Cell 88, 187-196.

    Google Scholar 

  • Ungermann, C., Neupert, W., and Cyr, D. M. (1994). Science 266, 1250-1253.

    Google Scholar 

  • van de Vossenberg, J. L., Driessen, A. J., Grant, W. D., and Konings, W. N. (1999). Extremophiles 3, 253-257.

    Google Scholar 

  • von Heijne, G. (1990a). Curr. Opin. Cell Biol. 2, 604-608.

    Google Scholar 

  • von Heijne, G. (1990b). J. Membr. Biol. 115, 195-201.

    Google Scholar 

  • Wild, J., Altman, E., Yura, T., and Gross, C. A. (1992). Genes Dev. 6, 1165-1172.

    Google Scholar 

  • YaDeau, J. T., Klein, C., and Blobel, G. (1991). Proc. Natl. Acad. Sci. U.S.A. 88, 517-521.

    Google Scholar 

  • Yahr, T. L., and Wickner, W. T. (2001). EMBO J. 20, 2472-2479.

    Google Scholar 

  • Yamauchi, K., Doi, K., Kinoshita, M., Kii, F., and Fukuda, H. (1992). Biochim. Biophys. Acta 1110, 171-177.

    Google Scholar 

  • Yamauchi, K., Doi, K., Yoshida, Y., and Kinoshita, M. (1993). Biochim. Biophys. Acta 1146, 178-182.

    Google Scholar 

  • Yen, M. R., Harley, K. T., Tseng, Y. H., and Saier, M. H., Jr. (2001). FEMS Microbiol. Lett. 204, 223

    Google Scholar 

  • Yen, M. R., Tseng, Y. H., Nguyen, E. H., Wu, L. F., and Saier, M. H., Jr. (2002). Arch. Microbiol. 177, 441

    Google Scholar 

  • Yonath, A. (2002). Annu. Rev. Biophys. Biomol. Struct. 31, 257-273.

    Google Scholar 

  • Young, J. C., Hoogenraad, N. J., and Hartl, F. U. (2003). Cell 112, 41-50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ring, G., Eichler, J. Extreme Secretion: Protein Translocation Across the Archaeal Plasma Membrane. J Bioenerg Biomembr 36, 35–45 (2004). https://doi.org/10.1023/B:JOBB.0000019596.76554.7a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000019596.76554.7a

Navigation