Skip to main content
Log in

Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using plant microfiber bundles with a nanometer unit web-like network, a moulded product with a bending strength of 250 MPa was obtained without the use of binders. High interactive forces seem to be developed between pulp fibers owing to their nanometer unit web-like network. In other words, the area of possible contact points per fiber are increased, so that more hydrogen bonds might be formed or van der Waals forces increased. When 2% oxidized tapioca starch, by weight, was added, the yield strain doubled and the bending strength reached 310 MPa. The starch mixed moulded product had a similar stress strain curve to that for magnesium alloy, and three to four times higher Young's modulus and bending strength values than polycarbonate and GFRP (chopped). The mouldings have a combination of environmentally friendly and high strength properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Fengel and G. Wegener, in “WOOD—Chemistry Ultrastructure Reactions” (Walter de Gruyter, Belrin, New York, 1983) p. 93.

    Google Scholar 

  2. I. Sakurada, Y. Nukushima and T. Ito, J. Polym. Sci. 57 (1962) 651.

    Google Scholar 

  3. D. H. Page and F. El-Hosseiny, J. Pulp Pap. Sci. 9 (1983) 99.

    Google Scholar 

  4. L. H. Sperling, “Introduction to Physical Polymer Science” (John Wiley & Sons Inc., New York, 2001) p.499.

    Google Scholar 

  5. L. Lundquist, B. Marque, P. O. Hagstrand, Y. Leterrier and J.-A. E. Manson, Compos. Sci. Technol. 63 (2003) 137.

    Google Scholar 

  6. T. G. Rials, M. P. Wolcott and J. M. Nassar, J. Appl. Polym. Sci. 80 (2001) 546.

    Google Scholar 

  7. M. A. Svoboda, R. W. Lang, R. Bramsteidl, M. Ernegg and W. Stadlbauer, Mol. Cryst. Liq. Cryst. 47 (2000) 353.

    Google Scholar 

  8. X. Y. Chen, Q. P. Guo and Y. L. Mi, J. Appl. Polym. Sci. 69 (1998)1891.

    Google Scholar 

  9. J. Simonsen, Forest Prod. J. 47 (1997) 74.

    Google Scholar 

  10. O. Y. Mansour, S. Kamel and M. A. Nassar, J. Appl. Polym. Sci. 69 (1998) 845.

    Google Scholar 

  11. M. Wollerdorfer and H. Bader, Ind. Crop. Prod. 8 (1998) 105.

    Google Scholar 

  12. D. G. Hepworth, J. F. V. Vincent, G. Jeronimidis and D. M. Bruce, Compos. Part A-Appl. S. 31 (2000) 599.

    Google Scholar 

  13. F. W. Herrick, R. L. Casebier, J. K. Hamilton and K. R. Sandberg, J. Appl. Polym. Sci.: Appl. Polym. Symp. 37 (1983) 797.

    Google Scholar 

  14. T. Taniguchi and K. Okamura, Polym. Int. 47 (1998) 291.

    Google Scholar 

  15. Y. Matsuda, Sen-i Gakkaishi 56 (2000) 192.

    Google Scholar 

  16. S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi and M. Uryu, J. Mater. Sci. 24 (1989) 3141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yano, H., Nakahara, S. Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. Journal of Materials Science 39, 1635–1638 (2004). https://doi.org/10.1023/B:JMSC.0000016162.43897.0a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000016162.43897.0a

Keywords

Navigation