Skip to main content
Log in

Effects of Nafion® Dehydration in PEM Fuel Cells

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The current dependence of the ohmic resistance of Nafion membranes was examined with different types of humidification: cathodic (ChAd), anodic (CdAh), anodic and cathodic (ChAh) and no humidification at all (CdAd). Data show that for stacks with humidified cathodes (ChAd and ChAh), the resistance is small and relatively insensitive to the presence of the anodic humidification. On the contrary, for stacks with non-humidified cathodes (CdAh and CdAd), the membrane resistance is high and strongly dependent on current and anodic humidification. The kinetics of membrane dehydration was examined by recording the galvanostatic transients of the stack voltage and resistance, after removing the humidification. It was found that the changes in the ohmic resistance ΔR Ω(t), although significant, cannot explain entirely the observed decay of the stack voltage. To account for the difference, an additional resistive term is introduced ΔR p(t). Explicit equations were found for the time and current dependence of the two resistive terms ΔR Ω(t) and ΔR p(t) after humidification removal. A tentative explanation for the new resistive term was provided using electrochemical impedance spectroscopy (EIS). EIS data obtained at low overpotential show that dehydration of the Nafion present in the cathode catalytic layer results in an increase of the polarization resistance; the apparent deactivation of the cathode electrocatalyst appears to be due to a decrease of the electrochemically active surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.A. Zawodzinski, C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 1041.

    CAS  Google Scholar 

  2. J.T. Hinatsu, M. Mizuhata and H. Takenada, J. Electrochem. Soc. 141 (1994) 1493.

    CAS  Google Scholar 

  3. T.A. Zawodzinski, T.E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 1981.

    Google Scholar 

  4. M.W. Verbrugge and R.F. Hill, J. Electrochem. Soc. 137 (1990) 3770.

    CAS  Google Scholar 

  5. V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer and E.R. Gonzalez, Electrochim. Acta 43 (1998) 3761.

    Article  CAS  Google Scholar 

  6. T. Okada, G. Xie and Y. Tanabe, J. Electroanal. Chem. 413 (1996) 49.

    Article  CAS  Google Scholar 

  7. T.E. Springer, T.A. Zawodzinski and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.

    CAS  Google Scholar 

  8. K. Dannenberg, P. Ekdunge and G. Lindbergh, J. Appl. Electrochem. 30 (2000) 1377.

    Article  CAS  Google Scholar 

  9. D.R. Sena, E.A. Ticianelli, V.A. Paganin and E.R. Gonzalez, J. Electroanal. Chem. 477 (1999) 164.

    Article  CAS  Google Scholar 

  10. G.J.M. Jansen and M.L.J. Overvelde, J. Power Sources 101 (2001) 117; R.J. Bellows, M.Y. Lin, M. Arif, A.K. Thompson and D. Jacobson, J. Electrochem. Soc. 146 (1999) 1099.

    Google Scholar 

  11. T.A. Zawodizinski, M. Neeman, L.O. Sillerud and S. Gottesfeld, J. Phys. Chem. 95 (1991) 1040.

    Google Scholar 

  12. P.C. Reike and N.E. Vanderborgh, J. Membr. Sci. 32 (1987) 313.

    Google Scholar 

  13. S. Slade, S.A. Campbell, T.R. Ralph and F.C. Walsh, J. Electrochem. Soc. 149 (2002) A 1556.

    Article  CAS  Google Scholar 

  14. F.N. Buchi and G.G. Scherer, J. Electroanal. Chem. 404 (1996) 37.

    Google Scholar 

  15. F.N. Buchi and G.G. Scherer, J. Electrochem. Soc. 148 (2001) A 183.

    CAS  Google Scholar 

  16. A. Paganin, E.A. Ticianelli and E.R. Gonzalez, in S. Gottesfeld, G. Halpert and A. Landgrebe (Eds) ‘Proton Conducting Membrane Fuel Cells’, PV 95-23, The Electrochem. Soc. Proceedings Series (Pennington, NJ, 1995), p. 102.

  17. M. Watanabe, H. Igarashi, H. Uchida and F. Hirashawa, J. Electroanal. Chem. 399 (1995) 239.

    Article  CAS  Google Scholar 

  18. M. Ciureanu and M. Badita, J. New Mat. Electrochem. Syst. in press.

  19. M. Ciureanu and R. Roberge, J. Phys. Chem. 105, (2001) 3531.

    CAS  Google Scholar 

  20. C. Hawk, A. Smirnova, J.M. Fenton and H.R. Kunk, Proceedings of the 200th Meeting of the Electrochemical Society, San Francisco, 2–7 Sept. (2001), Abstr. 424.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciureanu, M. Effects of Nafion® Dehydration in PEM Fuel Cells. Journal of Applied Electrochemistry 34, 705–714 (2004). https://doi.org/10.1023/B:JACH.0000031102.32521.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000031102.32521.c6

Navigation