Skip to main content
Log in

Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mechanisms for inorganic carbon acquisition in Laminaria digitata (Hudson) Lamour and L. saccharina (L.) Lamour from the Swedish west coast were studied in pH-drift experiments, using several inhibitors for different types of carbon uptake across the cell membrane. Throughout the experiments total carbon decreased in concert with a pH increase while alkalinity stayed relatively stable. Addition of acetazolamide had a strong inhibitory effect on the carbon uptake rate in L. digitata and the anion exchange protein inhibitor DIDS had a small inhibitory effect above pH 9.5. These results indicate that carbon uptake in L. digitata depends on the presence of an external carbonic anhydrase while direct bicarbonate uptake may contribute at high pH. These two mechanisms have previously been shown to occur in L. saccharina. We show that two inhibitors of H+-ATPases, vanadate and erythrosin B, also decreased carbon uptake rates in both Laminaria species. The effect of erythrosin B was immediate and it probably acts on the outside of the cell membrane. Contrarily, vanadate needs to be transported into the cell, where it competes with the phosphate from ATP for the aspartic acid phosphorylation site on the plasma membrane P-type H+-ATPase. Therefore, 1–2 h of pH drift were usually required before an inhibitory effect became apparent. Additional experiments with P-enriched and P-starved L. saccharina corroborated this process. Based on these results we suggest that the investigated Laminaria species, besides external carbonic anhydrase and DIDS-sensitive anion exchange, also possess a mechanism for the active uptake of carbon, which is dependent on plasma membrane P-type H+-ATPase activity. This paper also reports on the buffering capacity of the inhibitors when used in natural seawater, an aspect that has been neglected in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almgren, T., D. Dyrssen & S. Fonselius, 1983. Determination of alkalinity and total carbonate. In Grasshoff, K., M. Ehrhardt & K. Kremling, (eds), Methods of SeaWater Analysis. Verlag Chemie GmbH, Weinheim: 99–107.

    Google Scholar 

  • Andría, J. R., J. L. Pérez-Lloréns & J. J. Vergara, 1999. Mechanisms of inorganic carbon acquisition in Gracilaria gaditana nom. prov. (Rhodophyta). Planta 208: 564–573.

    Google Scholar 

  • Axelsson, L., 1988. Changes in pH as a measure of photosynthesis by marine macroalgae. Mar. Biol. 97: 287–294.

    Google Scholar 

  • Axelsson, L. & J. Uusitalo, 1988. Carbon acquisition strategies for marine macroalgae. I. Utilization of proton exchanges visualized during photosynthesis in a closed system. Mar. Biol. 97: 295–300.

    Google Scholar 

  • Axelsson, L., J. M. Mercado & F. L. Figueroa, 2000. Utilization of HCO -3 at high pH by the brown macroalga Laminaria saccharina. Eur. J. Phycol. 35: 53–59.

    Google Scholar 

  • Badger, M. R. & G. D. Price, 1994. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 369–392.

    Google Scholar 

  • Beffagna, N. & G. Romani, 1988. Effects of two plasmalemma ATPase inhibitors on H+ extrusion and intracellular pH in Elodea densa leaves. J. Exp. Bot. 39: 1033–1043.

    Google Scholar 

  • Bidwell, R. G. S. & J. McLachlan, 1985. Carbon nutrition of seaweeds-photosynthesis, photorespiration and respiration. J. Exp. Mar. Biol. Ecol. 86: 15–46.

    Google Scholar 

  • Brewer, P. G. & J. C. Goldman, 1976. Alkalinity changes generated by phytoplankton growth. Limnol. Oceanogr. 21: 108–117.

    Google Scholar 

  • Briskin, D. P. & J. B. Hanson, 1992. How does the plant plasma membrane H+-ATPase pump protons? J. Exp. Bot. 43: 269–289.

    Google Scholar 

  • Cabantchik, Z. I. & R. Greger, 1992. Chemical probes for anion transporters of mammalian-cell membranes. Am. J. Physiol. 262: C803–C827.

    PubMed  Google Scholar 

  • Choo, K. S., P. Snoeijs & M. Pedersén, 2002. Uptake of inorganic carbon by Cladophora glomerata (Chlorophyta) from the Baltic Sea. J. Phycol. 38: 493–502.

    Google Scholar 

  • Cocucci, M. C., 1986. Inhibition of plasma membrane and tonoplast ATPases by erythrosin B. Plant Sci. 47: 21–27.

    Google Scholar 

  • Cocucci, M. C. & E. Marré, 1986. Erythrosin B as an effective inhibitor of electrogenic H+ extrusion. Plant Cell Environ. 9: 677–679.

    Google Scholar 

  • Drechsler, Z., R. Sharkia, Z. I. Cabantchik & S. Beer, 1993. Bicarbonate uptake in the marine macroalga Ulva sp. is inhibited by classical probes of anion-exchange by red-blood-cells. Planta 191: 34–40.

    Google Scholar 

  • Gallagher, S. R. & R. T. Leonard, 1982. Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiol. 70: 1335–1340.

    Google Scholar 

  • Garner, M., J. Reglinski, W. E. Smith, J. McMurray, I. Abdullah & R. Wilson, 1997. A 1H spin echo and 51V NMR study of the interaction of vanadate with intact erythrocytes. J. Biol. Inorg. Chem. 2: 235–241.

    Google Scholar 

  • Gilmour, D. J., R. Kaaden & H. Gimmler, 1985. Vanadate inhibition of ATPases of Dunaliella parva in vitro and in vivo. J. Plant Physiol. 118: 111–126.

    Google Scholar 

  • Granbom, M. & M. Pedersén, 1999. Carbon acquisition strategies of the red alga Eucheuma denticulatum. Hydrobiologia 399: 349–354.

    Google Scholar 

  • Gutknecht, J., M. A. Bisson & F. C. Tosteson, 1977. Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers. J. Gen. Physiol. 69: 779–794.

    PubMed  Google Scholar 

  • Haglund, K., M. Björk, Z. Ramazanov, G. Garcia-Reina & M. Pedersén, 1992a. Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187: 275–281.

    Google Scholar 

  • Haglund, K., Z. Ramazanov, M. Mtolera & M. Pedersén, 1992b. Role of external carbonic anhydrase in light-dependent alkalization by Fucus serratus L. and Laminaria saccharina (L.) Lamour (Phaeophyta). Planta 188: 1–6.

    Google Scholar 

  • Harris, D. C., 1999. Quantitative Chemical Analysis, fifth edition. W.H. Freeman and Co., New York, 899 pp.

    Google Scholar 

  • Karlsson, J., Z. Ramazanov, T. Hiltonen, P. Gardeström & G. Samuelsson, 1994. Effect of vanadate on photosynthesis and the ATP/ADP ratio in low-CO2-adapted Chlamydomonas reinhardtii cells. Planta 192: 46–51.

    Google Scholar 

  • Larsson, C. & L. Axelsson, 1999. Bicarbonate uptake and utilization in marine macroalgae. Eur. J. Phycol. 34: 79–86.

    Google Scholar 

  • Lignell, Å. & M. Pedersén, 1986. Spray cultivation of seaweeds with emphasis on their light requirements. Bot. Mar. 29: 509–516.

    Google Scholar 

  • Lucas, W. J., 1975. Photosynthetic fixation of 14carbon by internodal cells of Chara corallina. J. Exp. Bot. 26: 331–346.

    Google Scholar 

  • Lucas, W. J., 1983. Photosynthetic assimilation of exogenous HCO -3 by aquatic plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 34: 71–104.

    Google Scholar 

  • Maberly, S. C., 1990. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol. 26: 439–449.

    Google Scholar 

  • Marré, M. T., A. Moroni, F. G. Albergoni & E. Marré, 1988. Plasmalemma redox activity and H+ Extrusion. 1. Activation of the H+-pump by ferricyanide-induced potential depolarization and cytoplasm acidification. Plant Physiol. 87: 25–29.

    Google Scholar 

  • Michelet, B. & M. Boutry, 1995. The plasma membrane H+-ATPase-a highly regulated enzyme with multiple physiological functions. Plant Physiol. 108: 1–6.

    Google Scholar 

  • Mimura, T., R. Müller, W. M. Kaiser, T. Shimmen & K. J. Dietz, 1993. ATP-dependent carbon transport in perfused Chara cells. Plant Cell Environ. 16: 653–661.

    Google Scholar 

  • Moroney, J. V., H. D. Husic & N. E. Tolbert, 1985. Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol. 79: 177–183.

    Google Scholar 

  • Palmqvist, K., S. Sjöberg & G. Samuelsson, 1988. Induction of inorganic carbon accumulation in the unicellular green algae Scenedesmus obliquus and Chlamydomonas reinhardtii. Plant Physiol. 87: 437–442.

    Google Scholar 

  • Price, G. D. & M. R. Badger, 1985. Inhibition by proton buffers of photosynthetic utilization of bicarbonate in Chara corallina. Aust. J. Plant Physiol. 12: 257–267.

    Google Scholar 

  • Provasoli, L., 1968. Media and prospects for the cultivation of marine algae. In Watanabe, A. & A. Hattori (eds), Cultures and collections of algae. Proc. US-Japan Conference, Hakone, Japanese Society of Plant Physiology: 63–75.

    Google Scholar 

  • Raven, J. A., 1997. Inorganic carbon acquisition by marine autotrophs. Advances in Botanical Research 27: 85–209.

    Google Scholar 

  • Ray, S., M. Klenell, K. S. Choo, M. Pedersén & P. Snoeijs, 2003. Carbon acquisition mechanisms in Chara tomentosa. Aquatic Botany 76: 141–154.

    Google Scholar 

  • Sharkia, R., S. Beer & Z. I. Cabantchik, 1994. A membrane-located polypeptide of Ulva sp. which may be involved in HCO -3 uptake is recognized by antibodies raised against the human red-bloodcell anion-exchange protein. Planta 194: 247–249.

    PubMed  Google Scholar 

  • Snoeijs, P., M. Klenell, K. S. Choo, I. Comhaire, S. Ray & M. Pedersén, 2002. Strategies for carbon acquisition in the red marine macroalga Coccotylus truncatus from the Baltic Sea. Mar. Biol. 140: 435–444.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn. John Wiley & Sons Inc., New York, 1022 pp.

    Google Scholar 

  • Surif, M. B. & J. A. Raven, 1989. Exogenous Inorganic carbonsources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta)-ecological and taxonomic implications. Oecologia 78: 97–105.

    Google Scholar 

  • Taiz, L. & E. Zeiger, 1998. Plant Physiology, 2nd edn. Sinauer Associates Inc., Massachusetts, 792 pp.

    Google Scholar 

  • Tseng, C. K. & B. M. Sweeney, 1946. Physiological studies of Gelidium cartilagineum. I. Photosynthesis, with special reference to the carbon dioxide factor. Am. J. Bot. 33: 706–715.

    Google Scholar 

  • Uusitalo, J., 1996. Algal carbon uptake and the difference between alkalinity and high pH (“alkalization”), exemplified with a pH drift experiment. Sci. Mar. 60: 129–134.

    Google Scholar 

  • Walker, N. A., F. A. Smith & I. R. Cathers, 1980. Bicarbonate assimilation by freshwater charophytes and higher plants: I. Membrane transport of bicarbonate ions is not proven. J. Membr. Biol. 57: 51–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klenell, M., Snoeijs, P. & Pedersén, M. Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. Hydrobiologia 514, 41–53 (2004). https://doi.org/10.1023/B:hydr.0000018205.80186.3e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:hydr.0000018205.80186.3e

Navigation