Skip to main content
Log in

Synthesis of fluorine substituted oligosaccharide analogues of monoglucosylated glycan chain, a proposed ligand of lectin-chaperone calreticulin and calnexin

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

As a part of a exploring the N-glycan-mediated glycoprotein quality control in endoplasmic reticulum, 2-fluorinated derivative Glcα1 → 3Man(F) 1, Glcα1 → 3Man(F)α1 → 2Man2, and Glcα1 → 3Man(F)α1 → 2Manα1 → 2Man 3 were synthesized in a concise manner. These oligosaccharides were subjected to binding studies with calreticulin by using isothermal titration calorimetry. It was revealed that disaccharide 1 was a poor ligand, while tri- (2) and tetrasaccharide (3) had observable affinity. Published in 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dwek RA, Toward understanding the function of sugars, Chem Rev 96, 683-720 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. Spiro RG, Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation, Cell Mol life Sci 61, 1025-41 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. Ellgaard L, Helenius A, Quality control in the endoplasmic reticulum, Nature Rev Mol Cell Biol 4, 181-91 (2003).

    Article  CAS  Google Scholar 

  4. Helenius A, Aebi M, Intracellular functions of N-linked gycans, Science 291, 2364-69 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. Knauer R, Lehle L, The oligosaccharyltransferase complex from yeast, Biochem Biophys Acta 1426, 259-73 (1999).

    PubMed  CAS  Google Scholar 

  6. Trombetta ES, The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis, Glyco-biology 13, 77R-91r (2003).

    Article  CAS  Google Scholar 

  7. Herscovics A, Importance of glycosidases in manmalian glycoprotein biosynthesis, Biochem Biophys Acta 1473, 96-107 (1999).

    PubMed  CAS  Google Scholar 

  8. Fagioli C, Sitia R, Glycoprotein quality control in the endoplasmic reticulum, J Biol Chem 276, 12885-92 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. Trombetta ES, Helenius A, Lectins as chaperones in glycoprotein folding, Curr Opin Struct Biol 8, 587-92 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. Bergeron JJ, Brenner MB, Thomas YD, Williams DB, Calnexin: A membrane-bound chaperone of the endoplasmic reticulum, Trends Biochem Sci 19, 124-8 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. Krause KH, Michalak M, Calreticulin, Cell 88, 439-43 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. Caramelo JJ, Castro OA, Alonso LG, de Prat-Gay G, Parodi AJ, UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates, Proc Natl Acad Sci 100, 86-91 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. Parodi AJ, Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells, Biochem Biophys Acta 1426, 287-95 (1999).

    PubMed  CAS  Google Scholar 

  14. Trombetta ES, Parodi AJ, Quality control and protein folding in the secretory pathway, Annu Rev Cell Dev Biol 19, 649-76 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Yoshida Y, A novel role for N-glycans in the ERAD systems, J Biochem 134, 183-90 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Kostova Z, Wolf DH, For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection, EMBO J 22, 2301-17 (2003).

    Article  Google Scholar 

  17. Tsai B, Ye Y, Rapoport TA, Retro-translocation of proteins from the endoplasmic reticulum into the cytosol, Nature Rev Mol Cell Biol 3, 246-55 (2002).

    Article  CAS  Google Scholar 

  18. Suzuki T, Lennarz WJ, Glycopeptide export from the endoplasmic reticulum into cytosol is mediated by a mechanism distinct from that for export of misfolded glycoprotein, Glycobiology 12, 803-11 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K, A novel ER α-mannosidase-like pro-tein accelerates ER-associated degradation, EMBO Rep 2, 415-22 (2001).

    PubMed  CAS  Google Scholar 

  20. Jakob CA, Bodmer D, Spirig U, Bättig P, Mardil A, Dignard D, Bergeron JJM, Thomas DY, Aebi M, Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast, EMBO Rep 2, 423-30 (2001).

    PubMed  CAS  Google Scholar 

  21. Tremblay LO, Herscovics A, Cloning and expression of a specific human α 1,2-mannosidase that trims Man9GlcNAc2 to Man8GlcNAc2 isomer B during N-glycan biosynthesis, Glyco-biology 9, 1073-8 (1999).

    Article  CAS  Google Scholar 

  22. Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K, Tai T, E3 ubiq-uitin ligase that recognizes sugar chains, Nature 418, 438-42 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki T, Park H, Lennarz WJ, Cytoplasmic peptide:N-glycanase (PNGase) in eukaryotic cells: Occurrence, primary structure, and potential functions, FASEB J 16, 635-41 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y, Choudhury P, Cabra CM, Sifers RN, Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome, J Biol Chem 274, 5861-7 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. Glickman MH, Ciechanover A, The ubiquitin-proteasome prote-olytic pathway: Destruction for the sake of construction, Physiol Rev 82, 373-428 (2001).

    Google Scholar 

  26. Stronge VS, Saito Y, Ihara Y, Williams DB, Relationship between Calnexin and BiP in suppressing aggregation and promoting re-folding of protein and glycoprotein substrates, J Biol Chem 276, 39779-87 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. Kapoor M, Srinivas H, Kandiah E, Gemma E, Ellgaard L, Oscarson S, Helenius A, Surolia A, Interactions of substrate with carleticulin, an endoplasmic reticulum chaperon, J Biol Chem 278, 6194-200 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Patil A, Thomas CJ, Surolia A, Kinetics and the mechanism of interaction of the endoplasmic reticulum chaperone, cal-reticulin, with monoglucosylated (Glc1Man9GlcNAc2) substrate, J Biol Chem 275, 24348-56 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. Schrag JD, Bergeron JJM, Li Y, Borisova S, Hahn M, Thomas DY, Cygler M, The structure of calnexin, an ER chaperone involved in quality control of protein folding, Mol Cell 8, 633-44 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. Elgaard L, Reik R, Herrmann T, Güntert P, Braun D, Helenius A, Wüthrich K, NMR structure of the calreticulin P-domain, Proc Natl Acad Sci 98, 3133-8 (2001).

    Article  Google Scholar 

  31. Frickel R, Reik R, Jelesarov I, Wüthrich K, Elgaard L, TROSY-NMR reveals interaction between Erp57 and the tip of the carleti-culin P-domain, Proc Natl Acad Sci 99, 1954-9 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. Vassilakos A, Michalak M, Lehrman MA, Williams DB, Oligosac-charide binding characteristics of the molecular chaperones cal-nexin and calreticulin, Biochemistry 37, 3480-90 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. Spiro RG, Zhu Q, Bhoyroo V, Soling HD, Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver golgi, J Biol Chem 271, 11588-94 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB, The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recog-nizing unfolded glycoproteins, J Biol Chem 270, 4697-704 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. Matsuo I, Wada M, Manabe S, Yamaguchi Y, Otake K, Kato K, Ito Y, Synthesis of monoglycosylated high-mannose-type dodecasac-charide, a putative ligand for molecular chaperone, calnexin and calreticulin, J AmChem Soc 125, 3402-3 (2003)

    Article  CAS  Google Scholar 

  36. Grinna LS, Robbins PW, Substrate specificities of Rat liver microsomal glucosidases which process glycoproteins, J Biol Chem 255, 2255-8 (1980).

    PubMed  CAS  Google Scholar 

  37. Lubas WA, Spiro RG, Evaluation of the role of rat liver Golgi endo-alpha-D-mannosidase in processing N-linked oligosaccharides, J Biol Chem 263, 3990-8 (1988).

    PubMed  CAS  Google Scholar 

  38. Ogawa T, Takahashi Y, Syntesis of and glycosylation by 2-deoxy-fluoro-D-mannopyranose, J Carbohydr Chem 2, 461-7 (1983).

    CAS  Google Scholar 

  39. Konradsson P, Mootoo DR, McDevitt RE, Fraser-Reid B, Iodonium ion generated in situ from N-iodosuccinimide and tri-fluoromethanesulfonic acid promotes direct linkage of disarmed pent-4-enyl glycosides, J Chem Soc Chem Commun 270-2 (1990).

  40. Veeneman GH, van Leeuwen SH, van Boom JH, Iodonium ion promoted reactions at the anomeric centre. II An efficient thio-glycoside mediated approach toward the formation of 1,2-translinked glycosides and glycosidic esters, Tetrahedron Lett 31, 1331-4 (1990).

    Article  CAS  Google Scholar 

  41. Schmidt RR, Michel J, Facil synthesis of alpha-O-glycosyl and beta-O-glycosyl imidates-preparation of glycosides and disaccharides, Angew Chem Int Ed Engl 19, 731-2 (1980).

    Article  Google Scholar 

  42. Schmidt RR, Recent developments in the synthesis of glycocon-jyugate, Pure & Appl Chem 61, 1257-70 (1989).

    CAS  Google Scholar 

  43. Ogawa T, Katano K, Matsui M, Regio-and stereo-controlled syn-thesis of core oligosaccharides of glycopeptides, Carbohydr Res 64, C3-9 (1978).

    Article  CAS  Google Scholar 

  44. Takatani M, Matsuo I, Ito Y, Pentafluoropropionyl and trifluo-roacetyl groups for temporary hydroxyl group protection in oligo-mannoside synthesis, Carbohydr Res 338, 1073-81 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, Y., Hagihara, S., Arai, M.A. et al. Synthesis of fluorine substituted oligosaccharide analogues of monoglucosylated glycan chain, a proposed ligand of lectin-chaperone calreticulin and calnexin. Glycoconj J 21, 257–266 (2004). https://doi.org/10.1023/B:GLYC.0000045109.60425.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000045109.60425.2e

Navigation