Skip to main content
Log in

Plant neocentromeres: fast, focused, and driven

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Plant neocentromeres are large heterochromatic domains that associate with microtubules and move rapidly poleward during meiotic cell division. In maize, neocentromeres are part of a process that leads to the preferential recovery (meiotic drive) of knobs in progeny. These 'classical' plant neocentromeres differ from animal neocentromeres by their morphology, inability to mediate sister chromatid cohesion, and their rates of movement on the spindle. We provide a comprehensive review of classical neocentromeres with emphasis on their origin and mechanisms of motility. The data support the view that most, if not all, classical neocentromeres are the outcome of selection by meiotic drive. In addition, we compare and contrast neocentromere-mediated meiotic drive with a recently proposed meiotic drive model for centromere evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananiev EV, Phillips RL, Rines HW (1998a) A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: Are chromosome knobs megatransposons? Proc Natl Acad Sci USA 95: 10785–10790.

    Article  PubMed  CAS  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998b) Complex structure of knob DNA on maize chromosome 9: Retrotransposon invasion into heterochromatin. Genetics 149: 2025–2037.

    PubMed  CAS  Google Scholar 

  • Ardlie KG (1998) Putting the brake on drive: meiotic drive of t haplotypes in natural populations of mice. Trends Genet 14: 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Bajer A (1958) Cine-micrographic studies on chromosome movements in b-irradiated cells. Chromosoma 9.

  • Bajer A (1969) Effect of UV microbeam irradiation on chromosome movements and spindle fine structure (with film demonstration). Biophys J 9: A151.

    Article  Google Scholar 

  • Bajer A, Mole-Bajer J (1963) Cine-analysis of some aspects of mitosis in endosperm. In Rose GG, ed. Cinemicrography in cell biology. New York: Academic Press, pp 357–409.

    Google Scholar 

  • Bloom K (1993) The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell 73: 621–624.

    Article  PubMed  CAS  Google Scholar 

  • Bosemark NO (1956) On accessory chromosomes in Festuca pratensis. IV. Cytology and inheritance of small and large accessory chromosomes. Hereditas 42: 235–260.

    Article  Google Scholar 

  • Brunet S, Maria AS, Guillaud P, Dujardin D, Kubiak JZ, Maro B (1999) Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J Cell Biol 146: 1012.

    Google Scholar 

  • Buckler ESI, Phelps-Durr TL, Buckler CSK, Dawe RK, Doebley JF, Holtsford TP (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153: 415–426.

    PubMed  CAS  Google Scholar 

  • Chan A, Cande WZ (1998) Maize meiotic spindles assemble caround chromatin and do not require paired chromosomes. J Cell Sci 111: 3507–3515.

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Hartl DL (1978) Population dynamics of the segregation distorter polymorphism of Drosophila melanogaster. Genetics 89: 171–192.

    PubMed  CAS  Google Scholar 

  • Choo KHA (2001) Domain organization at the centromere and neocentromere. Dev Cell 1: 165–177.

    Article  PubMed  CAS  Google Scholar 

  • Church K, Nicklas RB, Lin HP (1986) Micro-manipulated bivalents can triggger mini-spindle formation in Drosophila melanogaster spermatocyte cytplasm. J Cell Biol 103: 2765–2733.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112: 407–421.

    Article  PubMed  CAS  Google Scholar 

  • Compton DA (1998) Focusing on spindle poles. J Cell Sci 111: 1477–1481.

    PubMed  CAS  Google Scholar 

  • Czabab BB, Forer A, Bajer AS (1993) Ultraviolet microbeam irradiation of chromosomal spindle fibers in Haemanthus katherinae endosperm. J Cell Sci 105: 571–578.

    Google Scholar 

  • Dawe RK, Cande WZ (1996) Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc Natl Acad Sci USA 93: 8512–8517.

    Article  PubMed  CAS  Google Scholar 

  • Dawe RK, Reed L, YuH-G, Muszynski MG, Hiatt EN (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11: 1227–1238.

    Article  PubMed  CAS  Google Scholar 

  • Dennis ES, Peacock WJ (1984) Knob heterochromatin homology in maize and its relatives. J Mol Evol 20: 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Desai A, Maddox PS, Mitchison TJ, Salmon ED (1998) Anaphase A chromosome movement and poleward microtubule flux occur and similar rates in Xenopus extract spindles. J Cell Biol 141: 703–714.

    Article  PubMed  CAS  Google Scholar 

  • Dimitrov B, Georgieva V (1994) Comparative analysis of sister-chromatid exchanges in plant and human chromosomes. Mut Res 304: 187–192.

    CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • duSart D, Cancilla MR, Earle E et al. (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16: 144–153.

    Article  CAS  Google Scholar 

  • Forer A, Spurck T, Pickett-Heaps JD, Wilson PJ (2003) Structure of kinetochore fibres in crane-fly spermatocytes after irradiation with an ultraviolet microbeam: neither microtubules nor actin filaments remain in the irradiated region. Cell Motil Cytoskeleton 56: 173–192.

    Article  PubMed  Google Scholar 

  • Fuge H (1975) Anaphase transport of akinetochoric fragments in tipulid spermatocytes. Chromosoma 52: 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Funabiki H, Murray AW (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102: 411–412.

    Article  PubMed  CAS  Google Scholar 

  • Goday C, Pimpinelli S (1989) Centromere organization in meiotic chromosomes of Parascaris univalens. Chromosoma 98: 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Goshima G, Vale RD (2003) The roles of microtubule-based otor proteins in mitosis: comprehensive RNAi analysis in he Drosophila S2 cell line. J Cell Biol 162: 1003–1016.

    Article  PubMed  CAS  Google Scholar 

  • Gruss OJ, Wittmann M, Yokoyama H, et al. (2002) Chromosome-nduced microtubule assembly mediated by TPX2 is equired for spindle formation in HeLa cells. Nat Cell Biol 4: 71–879.

    Article  CAS  Google Scholar 

  • Haig D, Grafen A (1991) Genetic scrambling as a defence gainst meiotic drive. J Theor Biol 153: 531–558.

    PubMed  CAS  Google Scholar 

  • Ayman DL (1955) Centromeric behaviour of the univalents in wo Phalaris hybrids. Aust J Biol Sci 8: 241–253.

    Google Scholar 

  • Hayward MD (1962) Genetic control of neocentric activity inrye. Heredity 17: 439–441.

    Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  • Hiatt EH (2000) Cytogenetic analysis of meiotic drive in maize. PhD thesis. University of Georgia, Athens.

    Google Scholar 

  • Hiatt EN, Dawe RK (2003a) The meiotic drive system on maize abnormal chromosome 10 contains few essential genes. Genetica 117: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Hiatt EN, Dawe RK (2003b) Four loci on Abnormal chromosome 10 contribute to meiotic drive in maize. Genetics 164: 699–709.

    PubMed  CAS  Google Scholar 

  • Hiatt EN, Kentner EK, Dawe RK (2002) Independentlyregulated neocentromere activity of two classes of satellite sequences in maize. Plant Cell 14: 407–420.

    Article  PubMed  CAS  Google Scholar 

  • Hilton H, Gaut BS (1998) Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics 150: 863–872.

    PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Sugawa T, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93: 7783–7788.

    Article  PubMed  CAS  Google Scholar 

  • Hsu FC, Wang CJ, Chen CM, Hu HY, Chen CC (2003) Molecular characterization of a family of tandemly repeated DNA sequences, TR-1, in heterochromatic knobs of maize and its relatives. Genetics 164: 1087–1097.

    PubMed  CAS  Google Scholar 

  • Inoue´ S (1995) Foundations of confocal scanned imaging in light microscopy. In Handbook of biological confocal microscopy. New York: Plenum, pp 1–17.

    Google Scholar 

  • Jain HK (1960) Induced neocentric activity in chromosome ends. Chromosoma 11: 310–312.

    Article  PubMed  CAS  Google Scholar 

  • Jones GH (1969) Further correlations between Chiasmata and U-type exchanges in rye meiosis. Chromosoma 26: 105–118.

    Article  Google Scholar 

  • Karsenti E, Newport J, Kirschner M (1984) Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J Cell Biol 99: 47s–54s.

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33: 102–106.

    Article  PubMed  CAS  Google Scholar 

  • Kato YTA (1976) Cytological studies of maize (Zea mays L.) and teosinte (Zea mexicana Shrader Kuntze) in relation to their origin and evolution. Mass Agric Exp Stn Bull 635:1–185.

    Google Scholar 

  • Kattermann (1939) Ein neuer karyotyp bei Roggen. Chromosoma 1: 284–299.

    Article  Google Scholar 

  • Kavander T, Viinikka Y (1987) Neocentric activity in openpollinated cultivars of rye. Hereditas 107: 229–233.

    Google Scholar 

  • Khodjakov A, Cole RW, Bajer AS, Rieder CL (1996) The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase. J Cell Biol 132:1093–1104.

    Article  PubMed  CAS  Google Scholar 

  • Kikudome GY (1959) Studies on the phenomenon of preferential segregation in maize. Genetics 44: 815–831.

    PubMed  CAS  Google Scholar 

  • LaFountain JR, Oldenbourg R, Cole RW, Rieder CL (2001) Microtubule flux mediates poleward motion of acentric chromosome fragments during meiosis in insect spermatocytes. Mol Biol Cell 12: 4054–4056.

    PubMed  CAS  Google Scholar 

  • Lambert A-M (1993) Microtubule organizing centers in higher plants. Curr Opin Cell Biol 5: 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CJ, Malmberg RL, Muszynski MG, Dawe RK (2002) Maximum likelihood methods reveal conservation of function among closely related kinesin families. J Mol Evol 54: 42–53.

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Wright WH, Cheng S, He W, Berns MW (1993) Micromanipulation of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). Exp Cell Res 204: 110–120.

    Article  PubMed  CAS  Google Scholar 

  • Lombillo VA, Stewart RJ, McIntosh JR (1995) Minus-end directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373: 161–163.

    Article  PubMed  CAS  Google Scholar 

  • Longley AE (1937) Morphological characters of teosinte chromosomes. J Agric Res 54: 835–862.

    Google Scholar 

  • Longley AE (1939) Knob positions on corn chromosomes. J Agric Res 59: 475–490.

    Google Scholar 

  • Longley AE (1945) Abnormal segregation during megasporogenesis in maize. Genetics 30: 100–113.

    PubMed  CAS  Google Scholar 

  • Maddox P, Desai A, Oegema K, Mitchison MJ, Salmon ED (2002) Poleward microtubule flux is a major component of spindle dynamics and anaphase a in mitotic Drosophila embryos. Curr Biol 12: 1670–1674.

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157: 293–1298.

    Google Scholar 

  • Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12: 711–718.

    Article  PubMed  CAS  Google Scholar 

  • Manzanero S, Puertas MJ (2003) Rye terminal neocentromeres: characterization of the underlying DNA and chromatin structure. Chromosoma 111: 408–415.

    PubMed  CAS  Google Scholar 

  • Mazia D (1961) Mitosis and the physiology of cell division. In Brachet J, Mirsky AE, eds. The Cell, vol. III, New York: Academic Press, pp 77–422.

    Google Scholar 

  • McAinsh AD, Tytell JD, Sorger PK (2003) Structure, function, and regulation of budding yeast kinetochores. Ann Rev Cell Dev Biol 19: 519–539.

    Article  CAS  Google Scholar 

  • McClintock B (1943) Maize genetics. Yearbook Carnegie Inst Wash 42: 148–152.

    Google Scholar 

  • B. pseudolaevipes. Genetics 37: 8-25. Walters MS (1952b) A typical chromosome movement in meiotic anaphase of Bromus pitensis _ B. marginatus. Am J Bot 39: 619-625. Waters JC, Mitchison TJ, Rieder CL, Salmon ED (1996) The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol Biol Cell 7: 1547-1558. Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18: 30-37. Wood KW, Sakowicz R, Goldstein LSB, Cleveland DW (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91: 357-366. Wu C-I, Hammer MF (1990) Molecular evolution of ultraselfish genes of meiotic drvie systems. In Sclander RK, Whittam T, Clark A, eds. Evolution at the molecular level. Sunderland, Massachusetts: Sinauer. Yu H-G (2000) The maize kinetochore: composition, structure and roles in meiotic chromosome segregation. PhD thesis, University of Georgia, Athens. YuH-G, Hiatt EN, Chan A, Sweeney M, Dawe RK (1997) Neocentromere-mediated chromosome movement in maize. J Cell Biol 139: 831-840. YuH-G, Muszynski MG, Dawe RK (1999) The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J Cell Biol 145: 425-435. YuH-G, Hiatt EN, Dawe RK (2000) The plant kinetochore. Trends Plant Sci 5: 543-547. Zhong CX, Marshall JB, Topp C, et al. (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14: 2825-2836. Zohary D (1955) Secondary centric activity in Lilium formosanum. Am Nat 89: 50-52. Maize meiotic drive 669

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawe, R.K., Hiatt, E.N. Plant neocentromeres: fast, focused, and driven. Chromosome Res 12, 655–669 (2004). https://doi.org/10.1023/B:CHRO.0000036607.74671.db

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000036607.74671.db

Navigation