Skip to main content
Log in

Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Plants have been shown to use the mevalonate pathway for the biosynthesis of sterols and triterpenes in the cytoplasm and the recently discovered deoxyxylulose phosphate pathway for the biosynthesis of a variety of hemiterpenes, monoterpenes, diterpenes, as well as for the biosynthesis of carotenoids and the phytol side chain of chlorophyll in plastids. Despite the compartmental separation, at least one terpene precursor can be exchanged between the two pathways. In order to assess quantitatively the crosstalk between the two isoprenoid pathways, [2-13C1]mevalonolactone or [U-13C6]glucose were supplied to cell cultures of Catharanthus roseus grown under illumination or in darkness. Sitosterol, lutein and phytol were isolated and analysed by NMR spectroscopy. The incorporations of exogenous [2-13C1]mevalonolactone were 48% and 7% into the DMAPP and IPP precursors of sitosterol and lutein, respectively. With [U-13C6]glucose as precursor, at least 95% of sitosterol precursors were obtained via the mevalonate pathway, whereas phytol appeared to be biosynthesised via the deoxyxylulose phosphate pathway (approximately 60%) as well via the mevalonate pathway (approximately 40%). The apparent ratios for the contribution of the two pathways depend on the nature of the precursor supplied as well as the nature of the target compound. Thus, crosstalk between the two terpenoid pathways cannot be explained in detail by a simple two compartment model and requires an additional in depth study of complex regulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam KP & Zapp J (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochem 48: 953–959.

    Google Scholar 

  • Adam P, Hecht S, Eisenreich W, Kaiser J, Gräwert T, Arigoni D, Bacher A & Rohdich F (2002) Biosynthesis of terpenes. Studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase, Proc. Natl. Acad. Sci. USA 99: 12108–12113.

    PubMed  Google Scholar 

  • Altincicek B, Duin EC, Reichenberg A, Hedderich R, Kollas AK, Hintz M, Wagner S, Wiesner J, Beck E & Jomma H (2002) LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett. 532: 437–440.

    PubMed  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A & Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci. USA 94: 10600–10605.

    PubMed  Google Scholar 

  • Bach TJ (1995) Some aspects of isoprenoid biosynthesis in plants. A review. Lipids 30: 191–202.

    Google Scholar 

  • Bacher A, Rieder C, Eichinger D, Arigoni D, Fuchs G & Eisenreich W (1999) Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol. Rev. 22: 567–598.

    Google Scholar 

  • Bloch K (1992) Sterol molecule: Structure, biosynthesis, and function. Steroids 57: 378–383.

    PubMed  Google Scholar 

  • Bochar DA, Friesen JA, Stauffacher CV & Rodwell VW(1999) Biosynthesis of mevalonic acid from acetyl-CoA. In: Cane, D (ed) Comprehensive Natural Product Chemistry, Vol. 2 (pp. 15–44). Pergamon, Oxford, UK.

    Google Scholar 

  • Eichinger D, Bacher A, Zenk MH & Eisenreich W (1999) Analysis of metabolic pathways via quantitative prediction of isotope labelling patterns: A retrobiosynthetic 13C NMR study on the monoterpene loganin. Phytochemistry 51: 223–236.

    Google Scholar 

  • Eisenreich W, Schwarzkopf B & Bacher A (1991) Biosynthesis of nucleotides, flavins, and deazaflavins in Methanobacterium thermoautotrophicum. J. Biol. Chem. 266: 9622–9631.

    PubMed  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH & Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol. 5: R221–R233.

    PubMed  Google Scholar 

  • Eisenreich W & Bacher A (2000) Elucidation of biosynthetic pathways by retrodictive/predictive comparison of isotopomer patterns determined by NMR spectroscopy. In: Setlow, JK (ed) Genetic Engineering, Principles and Methods, Vol. 22 (pp. 121–153). Plenum Press, New York, USA.

    Google Scholar 

  • Eisenreich W, Rohdich F & Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6: 78–87.

    PubMed  Google Scholar 

  • Hecht S, Eisenreich W, Adam P, Amslinger S, Kis K, Bacher A, Arigoni D & Rohdich F (2001) Studies on the nonmevalonate pathway to terpenes: The role of the GcpE (IspG) protein. Proc. Natl. Acad. Sci. USA 98: 14837–14842.

    PubMed  Google Scholar 

  • Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas A-K, Beck E, Wiesner J, Eberl M. & Jomaa H. (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett. 509: 317–322.

    PubMed  Google Scholar 

  • Itoh D, Karunagoda, RP, Fushie T, Katoh K & Nabeta K (2000) Nonequivalent labeling of the phytyl side chain of chlorophyll A in callus of the hornwort Anthoceros punctatus. J. Nat. Prod. 63: 1090–1093.

    PubMed  Google Scholar 

  • Kollas A-K, Duin EC, Eberl M, Altincicek B, Hintz M, Reichenberg A, Henschker D, Henne A, Steinbrecher I, Ostrovsky DN, Hedderich R, Beck E, Jomaa H & Wiesner J (2002) Functional characterization of GcpE, an essential enzyme of the non-mevalonate pathway of isoprenoids. FEBS Lett. 532: 432–436.

    PubMed  Google Scholar 

  • Lichtenthaler HK, Zeidler J, Schwender J & Müller C (2000) The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Z. Naturforsch. 55C: 305–313.

    Google Scholar 

  • Linsmaier EM & Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 18: 100–127.

    Google Scholar 

  • Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M & Leon P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 9: 649–658.

    PubMed  Google Scholar 

  • Piel J, Donath J, Bandemer K & Boland W (1998) Mevalonateindependent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles. Angew. Chemie Int. Ed. 37: 2478–2481.

    Google Scholar 

  • Qureshi N & Porter JW(1981) Conversion of acetyl-coenzyme A to isopentenyl pyrophosphate. In: Porter, JW, Spurgeon, SL (eds) Biosynthesis of isoprenoid compounds, Vol. 1 (pp. 47–94). John Wiley, New York, USA.

    Google Scholar 

  • Rohdich F, Kis K, Bacher A & Eisenreich W (2001) The nonmevalonate pathway of isoprenoids: Genes, enzymes and intermediates. Curr. Opin. Chem. Biol. 5: 535–540.

    PubMed  Google Scholar 

  • Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A & Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: Metabolic role of IspH (LytB) protein. Proc. Natl. Acad. Sci. USA 99: 1158–1163.

    PubMed  Google Scholar 

  • Rohdich F, Zepeck F, Adam P, Hecht S, Kaiser J, Laupitz R, Gräwert T, Amslinger S, EisenreichW, Bacher A & Arigoni D (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: Studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc. Natl. Acad. Sci. USA (in press).

  • Rohmer M (1998) Isoprenoid biosynthesis via the mevalonateindependant route, a novel target for antibacterial drugs? Prog. Drug. Res. 50: 135–154.

    PubMed  Google Scholar 

  • Rohmer M (1999) A mevalonate-independent route to isopentenyl diphosphate. In: Cane, D. (ed.) Comprehensive Natural Product Chemistry, Vol. 2 (pp. 45–67). Pergamon, Oxford, UK.

    Google Scholar 

  • Saccettini JC & Poulter CD (1997) Creating isoprenoid diversity. Science 277: 1788–1789.

    PubMed  Google Scholar 

  • Seto H, Watanabe H & Furihata K (1996) Simultaneous operation of the mevalonate and non-mevalonate pathways in the biosynthesis of isopentenyl diphosphate in Streptomyces aeriouvifer. Tetrahedron Lett. 37: 7979–7982.

    Google Scholar 

  • Seto H, Orihara N & Furihata K (1998) Studies on the biosynthesis of terpenoids produced by actinomycetes. Part 4. Formation of BE-40644 by the mevalonate and nonmevalonate pathways. Tetrahedron Lett. 39: 9497–9500.

    Google Scholar 

  • Schwarz MK (1994) Terpen-Biosynthese in Ginkgo biloba: Eine überraschende Geschichte. Thesis (Eidgenösische Technische Hochschule Zürich).

  • Schwarz M & Arigoni D (1999) Ginkgolide Biosynthesis In: Cane, D (ed) Comprehensive Natural Product Chemistry, Vol. 2 (pp. 367–400). Pergamon, Oxford, UK.

    Google Scholar 

  • Wolff M, Seemann M, Grosdemange-Billiard C, Tritsch D, Campos N, Rodriguez-Concepcion M, Boronat A & Rohmer M (2002) Isoprenoid biosynthesis via the methylerythritol phosphate pathway. (E)-4-Hydroxy-3-methylbut-2-enyl diphosphate: chemical synthesis and formation from methylerythritol cyclodiphosphate by a cell-free system from Escherichia coli. Tetrahedron Lett. 43: 2555–2559.

    Google Scholar 

  • Yang J-W & Orihara Y (2002) Biosynthesis of abietane diterpenoids in cultured cells of Torreya nucifera var. radicans: Biosynthetic inequality of the FPP part and the terminal IPP. Tetrahedron 58: 1265–1270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Eisenreich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuhr, C.A., Radykewicz, T., Sagner, S. et al. Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochemistry Reviews 2, 3–16 (2003). https://doi.org/10.1023/B:PHYT.0000004180.25066.62

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHYT.0000004180.25066.62

Navigation