Skip to main content
Log in

Interference Testing for Atmospheric HOx Measurements by Laser-induced Fluorescence

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Accurate OH and HO2 (collectively called HOx) measurements by laser-induced fluorescence (LIF) may be contaminated by spurious signals from interfering atmospheric chemicals or from the instrument itself. Interference tests must be conducted to ensure that observed OH signal originates solely from ambient OH and is not due to instrument artifacts. Several tests were performed on the Penn State LIF HOx instrument, both in the laboratory and in the field. Theseincluded measurements of the instrument's zero signal by using either zero air or perfluoropropylene to remove OH, examination of spectral interferences from naphthalene, sulfur dioxide, and formaldehyde, and tests of interferences by addition of suspected interfering atmospheric chemicals, including ozone, hydrogen peroxide, nitrous acid, formaldehyde, nitric acid, acetone, and organic peroxy radicals (RO2). All tests lacked evidence ofsignificant interferences for measurements in the atmosphere, including highly polluted urban environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegrini, I., Cortiello, M., Febo, A., and Perrino, C., 1992: Generation of standard atmospheres of nitrous acid, in G. Angeletti and G. Restelli (eds), Physico-Chemical Behaviour of Atmospheric Pollutants, ECSC, Brussels.

    Google Scholar 

  • Blitz, M. A., Heard, D. E., and Pilling, M. J., 2002: OH formation from CH3CO + O2: A convenient experimental marker for the acetyl radical, Chem. Phys. Lett. 365, 374–379.

    Google Scholar 

  • Bongartz, A., Kames, J., Welter, F., and Schurath, U., 1991: Near-UV absorption cross section and trans/cis equilibrium of nitrous acid, J. Phys. Chem. 95, 1076–1082.

    Google Scholar 

  • Brassington, D. J., 1981: Sulfur dioxide absorption cross-section measurements from 290 nm to 317 nm (294 K), Appl. Optics 20, 3774–3779.

    Google Scholar 

  • Cantrell, C. A., Davidson, J. A., McDaniel, A. H., Shetter, R. E., and Calvert, J. G., 1990: Temperature-dependent formaldehyde cross sections in the near-ultraviolet spectral region, J. Phys. Chem. 94, 3902–3908.

    Google Scholar 

  • Carslaw, N., Creasey, D. J., Harrison, D., Heard, D. E., Hunter, M. C., Jacobs, P. J., Jenkin, M. E., Lee, J. D., Lewis, A. C., Pilling, M. J., Saunders, S. M., and Seakins, P. W., 2001: OH and HO2 radical chemistry in a forested region of north-western Greece, Atmos. Environ. 35, 4725–4737.

    Google Scholar 

  • Creasey, D. J., Heard, D. E., and Lee, J. D., 2001: OH and HO2 measurements in a forested region of north-western Greece, Atmos. Environ. 35, 4713–4724.

    Google Scholar 

  • Creasey, D. J., Heard, D. E., and Lee, J. D., 2002: Eastern Atlantic Spring Experiment 1997 (EASE97) 1. Measurements of OH and HO2 concentrations at Mace Head, Ireland, J. Geophys. Res. 107, 4091, doi:10.1029/2001JD000892.

    Google Scholar 

  • Davis, D. D., Rogers, M. O., Fischer, S. D., and Asai, K., 1981: An experimental assessment of the O3/H2O interference problem in the detection of natural levels of OH via laser induced fluorescence, Geophys. Res. Lett. 8, 69–72.

    Google Scholar 

  • Dubey, M. K., Hanisco, T. F., Wennberg, P. O., and Anderson, J. G., 1996: Monitoring potential photochemical interference in laser-induced fluorescence measurements of atmospheric OH, Geophys. Res. Lett. 23, 3215–3218.

    Google Scholar 

  • Faloona, I., Tan, D., Brune, W., Hurst, J., Barket Jr., D., Couch, T. L., Shepson, P., Apel, E., Riemer, D., Thornberry, T., Carroll, M. A., Sillman, S., Keeler, G. J., Sagady, J., Hooper, D., and Paterson, K., 2001: Nighttime observations of anomalously high levels of hydroxyl radicals above a deciduous forest canopy, J. Geophys. Res. 106, 24,315–24,333.

    Google Scholar 

  • Faloona, I. C., Tan, D., Lesher, R. L., Hazen, N. L., Frame, C. L., Simpas, J. B., Harder, H., Martinez, M., Di Carlo, P., Ren, X., and Brune, W. H., 2004: A laser induced fluorescence instrument for detecting tropospheric OH and HO2: Characteristics and calibration, J. Atmos. Chem. 47, 139–167.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts Jr., J. N., 1986: Atmospheric Chemistry: Fundamentals and Experimental Techniques, Wiley, New York, pp. 368–369.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts Jr., J. N., 2000: Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, New York.

    Google Scholar 

  • George, L. A., Hard, T. M., and O'Brien, R. J., 1999: Measurement of free radicals OH and HO2 in Los Angeles smog, J. Geophys. Res. 104, 11,643–11,655.

    Google Scholar 

  • Geyer, A., Bächmann, K., Hofzumahaus, A., Holland, F., Konrad, S., Klüpfel, T., Pätz, H.-W., Perner, D., Mihelcic, D., Schäfer, H.-J., Volz-Thomas, A., and Platt, U., 2003: Nighttime formation of peroxy and hydroxyl radicals during the BERLIOZ campaign: Observations and modeling studies, J. Geophys. Res. 108, 8249, doi:10.1029/2001JD000656.

    Google Scholar 

  • Hanisco, T. F., Smith, J. B., Stimpfle, R. M., Wilmouth, D. M., Anderson, J. G., Richard, E. C., and Bui, T. P., 2002: In situ observations of HO2 and OH obtained on the NASA ER-2 in the high-ClO conditions of the 1999/2000 Arctic polar vortex, J. Geophys. Res. 107, 8283, doi:10.1029/2001JD001024.

    Google Scholar 

  • Hard, T. M., O'Brien, R. J., Chan, C. Y., and Mehrabzadeh, A. A., 1984: Tropospheric free radical determination by FAGE, Environ. Sci. Technol. 18, 768–777.

    Google Scholar 

  • Hofzumahaus, A., Aschmutat, U., Heßling, M., Holland, F., and Ehhalt, D. H., 1996: The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN field campaign, Geophys. Res. Lett. 23, 2541–2544.

    Google Scholar 

  • Holland, F., Hessling, M., and Hofzumahaus, A., 1995: In situ measurement of tropospheric OH radicals by laser-induced fluorescence-a description of the KFA instrument, J. Atmos. Sci. 52, 3393–3401.

    Google Scholar 

  • Holland, F., Hofzumahaus, A., Schäfer, J., Kraus, A., and Pätz, H., 2003: Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ, J. Geophys. Res. 108, 8246, doi:10.1029/2001JD001393.

    Google Scholar 

  • Kanaya, Y., Sadanaga, Y., Matsumoto, J., Sharma, U. K., Hirokawa, J., Kajii, Y., and Akimoto, H., 1999: Nighttime observation of the HO2 radical by a LIF instrument at Oki island, Japan, and its possible origins, Geophys. Res. Lett. 26, 2179–2183.

    Google Scholar 

  • Majer, V. and Acree, W. E., 1992: Enthalpy of vaporization and fusion of organic compounds, in D. Lide (ed.), CRC Handbook of Chemistry and Physics 73rd Ed., CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Frost, G. J., Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter, R. E., Wert, B., Fried, A., Alicke, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J., 2003a: OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999, J. Geophys. Res. 108, 4617, doi: 10.1029/2003JD003551

    Google Scholar 

  • Martinez, M., Harder, H., Ren, X., Lesher, R. L., and Brune, W. H., 2003b: Measuring atmospheric naphthalene with laser-induced fluorescence, submitted to Atmospheric Chemistry and Physics.

  • Mather, J. H., Stevens, P. S., and Brune,W. H., 1997: OH and HO2 measurements using laser-induced fluorescence, J. Geophys. Res. 102, 6427–6436.

    Google Scholar 

  • McGee, T. J. and McIlrath, T. J., 1984: Absolute OH absorption cross sections (for lidar measurements), J. Quant. Spectrosc. Radiat. Transfer 32, 179–184.

    Google Scholar 

  • Neuroth, R., Dorn, H.-P., and Platt, U., 1991: High resolution spectral features of a series of aromatic hydrocarbons and BrO: Potential interferences in the atmospheric OH-measurements, J. Atmos. Chem. 12, 278–298.

    Google Scholar 

  • Ortgies, G., Gericke, K.-H., and Comes, F. J., 1980: Is UV laser induced fluorescence a method to monitor tropospheric OH? Geophys. Res. Lett. 7, 905–908.

    Google Scholar 

  • Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J. B., and Brune, W. H., 2003: HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001, Atmos. Environ. 37, 3627–3637.

    Google Scholar 

  • Sander, S. P., Friedl, R. R., DeMore, W. B., Golden, D. M., Kurylo, M. J., Hampson, R. F., Huie, R. E., Moortgat, C. K., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 2000: Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation number 12, JPL Publication 00–3, NASA Jet Propulsion Laboratory, Pasadena, California.

    Google Scholar 

  • Shirinzadeh, B., Wang, C. C., and Deng, D. Q., 1987: Pressure dependence of ozone interference in the laser fluorescence measurement of OH in the atmosphere, Appl. Optics 26, 2102–2105.

    Google Scholar 

  • Smith, G. P. and Crosley, D. R., 1990: A photochemical model of ozone interference effects in laser detection of tropospheric OH, J. Geophys. Res. 95, 16,427–16,442.

    Google Scholar 

  • Stevens, P. S., Mather, J. H., and Brune, W. H., 1994: Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure, J. Geophys. Res. 99, 3542–3557.

    Google Scholar 

  • Tan, D., Faloona, I., Simpas, J. B., Brune, W., Shepson, P. B., Couch, T. L., Sumner, A. L., Carroll, M. A., Thornberry, T., Apel, E., Riemer, D., and Stockwell, W., 2001: HOx budget in a deciduous forest: Results from the PROPHET summer 1998 campaign, J. Geophys. Res. 106, 24,407–24,427.

    Google Scholar 

  • Tanner, D. J. and Eisele, F. L., 1995: Present OH measurement limits and associated uncertainties, J. Geophys. Res. 100, 2883–2892.

    Google Scholar 

  • Tyndall, G. S., Orlando, J. J.,Wallington, T. J., and Hurley, M. D., 1997: Pressure dependence of the rate coefficients and product yields for the reaction of CH3CO radicals with O2, Int. J. Chem. Kinet. 29, 655–663.

    Google Scholar 

  • Vandaele, A. C., Simon, P. C., Guilmot, J.M., Carleer, M., and Colin, R., 1994: SO2 absorption cross section measurements in the UV using a Fourier Transform Spectrometer, J. Geophys. Res. 99, 25,599–25,605.

    Google Scholar 

  • Zeng, G., Heard, D. E., Pilling, M. J., and Robertson, S. H., 1998: A master equation study of lasergenerated interference in the detection of hydroxyl radicals using laser-induced fluorescence, Geophys. Res. Lett. 25, 4497–4500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Harder, H., Martinez, M. et al. Interference Testing for Atmospheric HOx Measurements by Laser-induced Fluorescence. Journal of Atmospheric Chemistry 47, 169–190 (2004). https://doi.org/10.1023/B:JOCH.0000021037.46866.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCH.0000021037.46866.81

Navigation