Skip to main content
Log in

Cholinesterase and Phosphatase Activities in Adults and Infective-stage Larvae of Levamisole-resistant and Levamisole-susceptible Isolates of Haemonchus contortus

  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Cholinesterase (ChE) and acid phosphatase (AP) activities, but not alkaline phosphatase activities, were detected in cytosolic and membrane-bound fractions of adult and infective-stage larvae of levamisole-resistant and levamisole-susceptible Haemonchus contortus. In contrast to other gastrointestinal nematodes, the ChE activity was higher in L3 than in adults and, in both cases, was mainly associated with membranes. ChE activity was inhibited by Triton X-100 and was only detected in membrane-bound fractions when the detergent was removed. Differences between resistant and susceptible L3 were observed in the response to inhibitors (cytosolic fraction) and in the enzymatic content (membrane-bound fraction). Phosphatase activity was detected at acidic pH in all fractions, being higher in the adult than in the L3 stage. In the former, most of the enzyme was localized in the membrane-bound fractions, whereas in the latter it was mainly in cytosolic fractions. This difference could be correlated with the activity in the gut. In inhibition assays, a difference between cytosolic fractions from resistant and susceptible adults was observed in their response to 1 mmol/L tartaric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Barrett, J., 1981. Biochemistry of Parasitic Helminths, (McMillan, London)

    Google Scholar 

  • Beh, C.T., Ferrari, D.C., Chung, M.A. and McGhee, J.D., 1991. An acid phosphatase as a biochemical marker for intestinal development in the nematode Caenorhabditis elegans. Developmental Biology, 147, 133-143

    Google Scholar 

  • Bradford, M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254

    Google Scholar 

  • Burt, J.S. and Ogilvie, B.M., 1975. In vitro maintenance of nematode parasites assayed by acetylcholinesterase and allergen secretion. Experimental Parasitology, 38, 75-82

    Google Scholar 

  • Butterworth, J. and Probert, A.J., 1970. Nonspecific phosphomonoesterases of Ascaris suum. I. Effect of inhibitors, activators and chelators. Experimental Parasitology, 28, 557-565

    Google Scholar 

  • Chang, S. and Opperman, C.H., 1991. Characterization of acetylcholinesterase molecular forms of the root-knot nematode Meloidogyne. Molecular and Biochemical Parasitology, 49, 205-214

    Google Scholar 

  • Ellman, G.L., Courtney, K.D., Andrew, V. and Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95

    Google Scholar 

  • Fetterer, R.H. and Rhoades, M.L., 2000. Characterization of acid phosphatase and phosphorylcholine hydrolase in adult Haemonchus contortus. Journal of Parasitology, 86, 1-6

    Google Scholar 

  • Gamble, H.R. and Mansfield, L.S., 1996. Characterization of excretory-secretory products from larval stages of Haemonchus contortus cultured in vivo. Veterinary Parasitology, 62, 291-305

    Google Scholar 

  • Hatzoglou, A., Prekezes, J., Tsami, M. and Castanas, E., 1992. Protein measurement of particulate and solubilized ovine liver membranes. Annals of Clinical Biochemistry, 29, 659-662

    Google Scholar 

  • Johnson, C.D. and Russell, R.L., 1983. Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans. Journal of Neurochemistry, 41, 30-46

    Google Scholar 

  • Kirazov, L.P., Venkov, L.G. and Kirazov, E.P., 1993. Comparison of the Lowry and the Bradford protein-assays as applied for protein estimation of membrane containing fractions. Analytical Biochemistry, 208, 44-48

    Google Scholar 

  • Lee, D.L., 1962. The distribution of esterase enzymes in Ascaris lumbricoides. Parasitology, 52, 241-260

    Google Scholar 

  • Lee, D.L., 1996. Why do some nematode parasites of the alimentary tract secrete acetylcholinesterase? International Journal for Parasitology, 5, 499-508

    Google Scholar 

  • Lee, R.M. and Hodsden, M.R., 1963. Cholinesterase activity in Haemonchus contortus and its inhibition by organophosphorus anthelmintic. Biochemical Pharmacology, 12, 1241-1252

    Google Scholar 

  • MAFF, 1986. Manual of Veterinary Parasitological Techniques, Reference book 418, (Ministry of Agriculture, Fisheries and Food; HMSO, London)

    Google Scholar 

  • Maki, J. and Yanigasawa, T., 1980. Acid phosphatase activity demonstrated in the nematodes, Dirofilaria immitis and Angyostrongylus cantonensis with special references to the characters and distribution. Parasitology, 80, 23-38

    Google Scholar 

  • Mallet, S. and Kerboeuf, D., 1984. Relation entre l'activité enzymatique et le pouvoir infestant au cours du vieillissement des larves infestantes de Heligmosomoides polygyrus (= Nematospiroides dubius). Royal Academy of Sciences of Paris, 298, 39-44

    Google Scholar 

  • Mallet, S., Huby, F. and Hoste, H., 1997. Characterization of acetylcholinesterase secreted by the trichostrongyle nematode parasites of ruminants. Veterinary Research, 28, 287-293

    Google Scholar 

  • Martínez-Grueiro, M.M., 2002. Acid phosphatase activity in excretion-secretion products from Heligmosomoides polygyrus adults: an indicator of the physiological status of the worms. Parasitology Research, 88, 946-949

    Google Scholar 

  • Massoulié, J., Pezzementi, L., Bon, S., Krejci, E. and Valette, F.M., 1993. Molecular and cellular biology of cholinesterases. Progress in Neurobiology, 41, 31-91

    Google Scholar 

  • McKeand, J.B., Knox, D.P. and Kennedy, M.W., 1994. The immunogenicity of the acetylcholinesterases of the cattle lungworm Dictyocaulus viviparus. International Journal for Parasitology, 24, 501-510

    Google Scholar 

  • Moreno-Guzmán, M.J., Coles, G.C., Jiménez-González, A., Criado-Fornelio, A. and Rodriguez-Caabeiro, F., 1998. Levamisole binding sites in Haemonchus contortus. International Journal for Parasitology, 28, 413-418

    Google Scholar 

  • Moulay, L. and Robert-Gero, M., 1995. Leishmania donovani: enhanced expression of soluble acid phosphatase in the presence of sinefungin, an antiparasitic agent. Experimental Parasitology, 80, 8-14

    Google Scholar 

  • Nimmo-Smith, R.H. and Keeling, J.E.D., 1960. Some hydrolytic enzymes of the parasitic nematode Trichuris muris. Experimental Parasitology, 10, 337-355

    Google Scholar 

  • Ogilvie, B.M., Rothwell, T.L.W., Bremner, K.C., Schnitzerling, H.J., Nolan, J. and Keith, R.K., 1973. Acetylcholinesterase secretion by parasitic nematodes. I: Evidence for secretion of the enzymes by a number of species. International Journal for Parasitology, 3, 589-597

    Google Scholar 

  • Parshad, V.R. and Guraya, S.S., 1978. Phosphatases in helminths: effects of pH and various chemicals and anthelmintics on the enzyme activities. Veterinary Parasitology, 4, 111-120

    Google Scholar 

  • Peterson, G.L., 1983. Determination of total protein. Methods in Enzymology, 91, 95-119

    Google Scholar 

  • Rathaur, S., Robertson, B.D., Selkirk, M.E. and Maizels, R.M., 1987. Secretory acetylcholinesterases from Brugia malayi adult and microfilarial parasites. Molecular and Biochemical Parasitology, 26, 257-265

    Google Scholar 

  • Reilly, T.J., Baron, G.S., Nano, F.E. and Kuhlenschmidt, M.S., 1996. Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis. Journal of Biological Chemistry, 271, 10973-10983

    Google Scholar 

  • Remaley, A.T.S., Das, S., Campbell, P.I., LaRocca, G.M., Pope, M.T. and Glew, R.H., 1985. Characterization of Leishmania donovani acid phosphatases. Journal of Biological Chemistry, 260, 880-886

    Google Scholar 

  • Rhoads, M.L., 1981. Cholinesterase in the parasitic nematode Stephanurus dentatus. Journal of Biological Chemistry, 256, 9316-9323

    Google Scholar 

  • Rosenberry, T.L., 1975. Acetylcholinesterase. Advances in Enzymology, 43, 103-218

    Google Scholar 

  • Rothwell, T.L.W., Ogilvie, B.M. and Love, R.J., 1973. Acetylcholinesterase secretion by parasitic nematodes. II: Trichostrongylus spp. International Journal for Parasitology, 3, 599-608

    Google Scholar 

  • Saha, A.K., Das, S., Glew, R.H. and Gottlieb, M., 1985. Resistance of leishmanial phosphatases to inactivation by oxygen metabolites. Journal of Clinical Microbiology, 22, 329-332

    Google Scholar 

  • Sanderson, B.E. and Ogilvie, B.M., 1971. A study of acetylcholinesterase throughout the life cycle of Nippostrongylus brasiliensis. Parasitology, 62, 367-373

    Google Scholar 

  • Sood, M.L. and Sehajpal, K., 1978. Morphological, histochemical and biochemical studies on the gut Haemonchus contortus. Rud., 1803. Zeitschrift für Parasitenkunde, 56, 267-273

    Google Scholar 

  • Sutherland, I.A. and Lee, D.L., 1993. Acetylcholinesterase in infective-stage larvae of Haemonchus contortus, Ostertagia circumcincta and Trichostrongylus colubriformis resistant and susceptible to benzimidazole anthelmintics. Parasitology, 107, 553-557

    Google Scholar 

  • Sutherland, I.A., Lee, D.D.L. and Lewis, D., 1989. Colorimetric assay for the detection of benzimidazole resistance in trichostrongyles. Research in Veterinary Sciences, 46, 336-363

    Google Scholar 

  • Talesa, V., Romani, R., Grauso, M., Rosi, G. and Giovannini, E., 1997. Expression of a single dimeric membrane-bound acetylcholinesterase in Parascaris equorum. Parasitology, 115, 653-660

    Google Scholar 

  • Von Brand, T., 1952. Chemical Physiology of Endoparasitic Animals, (Academic Press, New York)

    Google Scholar 

  • Vos, T. and Dick, T.A., 1992. Characterization of cholinesterases from the parasitic nematode Trichinella spiralis. Components in Biochemical Physiology, 103, 129-134

    Google Scholar 

  • Walker, R.J. and Holden-Dye, L., 1991. Evolutionary aspects of transmitter molecules, their receptors and channels. Parasitology, 102, S7-S29

    Google Scholar 

  • Watts, S.D.M. and Atkins, A.M., 1981. High molecular weight acetylcholinesterases from Nippostrongylus brasiliensis. Molecular and Biochemical Parasitology, 4, 171-182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giménez-Pardo, C., Martínez-Grueiro, M., Gómez-Barrio, A. et al. Cholinesterase and Phosphatase Activities in Adults and Infective-stage Larvae of Levamisole-resistant and Levamisole-susceptible Isolates of Haemonchus contortus . Vet Res Commun 27, 611–623 (2003). https://doi.org/10.1023/A:1027364227738

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027364227738

Navigation