Skip to main content
Log in

Heterogeneous synaptic covering and differential charge transfer sensitivity among the dendrites of a reconstructed abducens motor neurone: Correlations between electron microscopic and computer simulation data

  • Published:
Journal of Neurocytology

Abstract

Ultrastructural studies on the synaptology of dendritic arborizations of motoneurones have been problematic because dendrites are very thin in relation to their great length, and most of the studies on this topic have therefore dealt with only small parts of the dendritic tree. Here we compared the ultrastructural characteristics of the axon terminals distributed along the various dendrites of a single motoneurone. For this purpose, the light microscopic 3D reconstruction of the dendritic arborization of an intracellularly labelled abducens motoneurone was combined with an electron microscopic analysis of its synaptic contacts. Dendritic profiles were randomly sampled along the various dendrites and the axon terminals they received were classified on the basis of their ultrastructural features and their GABA-immunoreactivity. It emerged that the various dendrites differed according to the type and local arrangement of their synaptic inputs. Our second aim was to incorporate the morphological data obtained into a model giving the charge transfer effectiveness T(x) of the dendritic sites. The sensitivity S(x) of T(x) to changes in the membrane resistivity (Rm) simulating various levels of tonic synaptic activity was calculated. It turned out that both the proximal and distal regions of the dendritic arborization have a dense synaptic covering and a weak sensitivity to changes in the Rm, whereas the intermediate dendrites have a sparse synaptic covering and a high sensitivity to changes in tonic synaptic activity. This pattern of organisation might mediate the “gating” of a population of synapses covering some dendritic regions in a state-dependent fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADAMS, J. C. (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2, 141–145.

    Google Scholar 

  • ANTAL, M., KRAFTSIK, R., SZEKELY, G. & VAN DER LOOS, H. (1992) Synapses on motoneuron dendrites in the brachial section of the frog spinal cord: A computeraided electron microscopic study of cobalt-filled cells. Journal of Neurocytology 21, 34–49.

    Google Scholar 

  • BAE, Y. C., NAKAMURA, T., IHN, H. J., CHOI, M. H., YOSHIDA, A., MORITANI, M., HONMA, S. & SHIGENAGA, Y. (1999) Distribution pattern of inhibitory and excitatory synapses in the dendritic tree of single masseter alpha-motoneurons in the cat. Journal of Comparative Neurology 414, 454–468.

    Google Scholar 

  • BAKER, R. G., MANO, N. & SHIMAZU, H. (1969) Postsynaptic potentials in abducens motoneurons induced by vestibular stimulation. Brain Research 15, 577–580.

    Google Scholar 

  • BAKER, R. & SPENCER, R. F. (1981) Synthesis of horizontal conjugate eye movement signals in the abducens nucleus. Japonese Journal of EEG EMG 31, 39–49.

    Google Scholar 

  • BARRETT, J. N. & CRILL, W. E. (1974) Specific membrane properties of cat motoneurones. Journal of Physiology (London) 239, 301–324.

    Google Scholar 

  • BERNANDER, O., DOUGLAS, R. J., MARTIN, K. A. & KOCH, C. (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proceedings of the National Academy of Sciences (USA) 88, 11569–73.

    Google Scholar 

  • BLOOMFIELD, S. A., HAMOS, J. E. & SHERMAN, S. M. (1987) Passive cable properties and morphological correlates of neurones in the lateral geniculate nucleus of the cat. Journal of Physiology (London) 383, 653–692.

    Google Scholar 

  • BODIAN, D. (1966) Electron microscopy:Two major synaptic types on spinal motoneurons. Science 151, 1093–1094.

    Google Scholar 

  • BRAS, H., DESTOMBES, J., GOGAN, P. & TYC-DUMONT, S. (1987a) The dendrites of single brain-stem motoneurons intracellularly labelled with horseradish peroxidase in the cat. An ultrastructural analysis of the synaptic covering and the microenvironment. Neuroscience 22, 971–981.

    Google Scholar 

  • BRAS, H., GOGAN, P. & TYC-DUMONT, S. (1987b) The dendrites of single brain-stem motoneurons intracellularly labelled with horseradish peroxidase in the cat. Morphological and electrical differences. Neuroscience 22, 947–970.

    Google Scholar 

  • BRÅNNSTRÖM, T. (1993) Quantitative synaptology of functionally different types of cat medial gastrocnemius alpha-motoneurons. Journal of Comparative Neurology 330, 439–454.

    Google Scholar 

  • BRAS, H., KOROGOD, S., DRIENCOURT, Y., GOGAN, P. & TYC-DUMONT, S. (1993) Stochastic geometry and electronic architecture of dendritic arborization of brain stem motoneuron. European Journal of Neuroscience 5, 1485–1493.

    Google Scholar 

  • CABRERA, B., PORTILLO, F., PÁSARO, R. & DELGADO-GARCIA, J. M. (1988) Location of motoneurons and internuclear neurons within the rat abducens nucleus by means of horseradish peroxidase and fluorescent double labeling. Neuroscience Letters 87, 1–6.

    Google Scholar 

  • CAMERON, W. E., AVERILL, D. B. & BERGER, A. J. (1985) Quantitative analysis of the dendrites of cat phrenic motoneurons stained intracellularly with horseradish peroxidase. Journal of Comparative Neurology 231, 91–101.

    Google Scholar 

  • CARNEVALE, N. T. & JOHNSTON, D. (1982) Electrophysiological characterization of remote chemical synapses. Journal of Neurophysiology 47, 606–621.

    Google Scholar 

  • CONRADI, S. (1969) Ultrastructure and distribution of neuronal and glial elements on the surface of the proximal part of a motoneuron dendrite, as analysed by serial sections. Acta Physiologica Scandinavia 332, 49–64.

    Google Scholar 

  • CONRADI, S., KELLERTH, J. O., BERTHOLD, C. H. & HAMMARBERG, C. (1979) Electron microscopic studies of serially sectioned cat spinal alpha-motoneurons. IV. Motoneurons innervating slow-twitch (type S) units of the soleus muscle. Journal of Comparative Neurology 184, 769–782.

    Google Scholar 

  • CULHEIM, S., FLESHMAN, J. W., GLENN, L. L. & BURKE, R. E. (1987)Membranearea and dendritic structure of type-identified triceps surae ?-motoneurons. Journal of Comparative Neurology 255, 68–81.

    Google Scholar 

  • DEIF, A. (1986) Sensitivity Analysis in Linear Systems. (edited by Springer-Verlag) Berlin.

  • DELGADO-GARCIA, J. M., DEL POZO, F. & BAKER, R. (1986) Behavior of neurons in the abducens nucleus of the alert cat. II. Internuclear neurons. Neuroscience 17, 953–973.

    Google Scholar 

  • DE ZEEUW, C. I., HOLSTEGE, J. C., CALKOEN, F., RUIGROK, T. J. & VOOGD, J. (1988) A new Synaptic covering and charge transfer sensitivity of dendrites 23 combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Research 447, 369–375.

    Google Scholar 

  • DESTOMBES, J. & ROUVIERE, A. (1981) Ultrastructural study of vestibular and reticular projections to the abducens nucleus. Experimental Brain Research 43, 253–260.

    Google Scholar 

  • DURAND, J. (1991). NMDA actions on rat abducens motoneurons. European Journal of Neuroscience 3, 621–633.

    Google Scholar 

  • DURAND, J. (1993) Synaptic excitation triggers oscillations during NMDA receptor activation in rat abducens motoneurons. European Journal of Neuroscience 5, 1389–1397.

    Google Scholar 

  • ESCUDERO, M. & DELGADO-GARCIA, J. M. (1988) Behavior of reticular, vestibular and prepositus neurons terminating in the abducens nucleus of the alert cat. Experimental Brain Research 71, 218–222.

    Google Scholar 

  • ESCUDERO, M., DE LA CRUZ, R. R. & DELGADOGARCIA, J. M. (1992) A physiological study of vestibular and prepositus hypoglossi neurones projecting to the abducens nucleus in the alert cat. Journal of Physiology (London) 458, 539–560.

    Google Scholar 

  • EVERITT, B. S. (1992) The Analysis of Contingency Tables, 2nd edition (New York: Chapman and Hall).

    Google Scholar 

  • FUCHS, A. F. & KANEKO, C. R. S. (1981) A brain stem generator for saccadic eye movements. Trends in Neuroscience 4, 283–286.

    Google Scholar 

  • GACEK, R. R. (1971) Anatomical demonstration of the vestibulo-ocular projections in the cat. Acta Otorhyno-Laryngologia 293, 1–63.

    Google Scholar 

  • GLICKSMAN, M. A. (1980) Localization of motoneurons controlling the extra-ocular muscles of the rat. Brain Research 188, 53–62.

    Google Scholar 

  • GRANTYN, A., GRANTYN, R., GAUNITZ, U. & ROBINE, K. P. (1980) Sources of direct excitatory and inhibitory inputs from the medial rhombencephalic tegmentum to lateral and medial rectus motoneurons in the cat. Experimental Brain Research 39, 49–61.

    Google Scholar 

  • GRAY, E. G. (1959) axo-somatic and axo-dendritic synapses of the cerebral cortex:Anelectron microscope study. Journal of Anatomy 93, 420–433.

    Google Scholar 

  • HIGHSTEIN, S. M. (1973) Synaptic linkage in the vestibuloocular and cerebello-vestibular pathways to the VIth nucleus in the rabbit. Experimental Brain Research 17, 301–314.

    Google Scholar 

  • HINES, M. L. & CARNEVALE, N. T. (1997) The NEURON simulation environment. Neural Computation 9, 1179–1209.

    Google Scholar 

  • HORCHOLLE-BOSSAVIT, G., GOGAN, P., IVANOV, Y., KOROGOD, S. & TYC-DUMONT, S. (2000) The problem of the morphological noise in reconstructed dendritic arborizations. Journal of Neuroscience Methods 95, 83–93.

    Google Scholar 

  • JACK, J. J. B., REDMAN, S. J. & WONG, K. (1981) The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. Journal of Physiology (London) 321, 65–96.

    Google Scholar 

  • KERNELL, D. & ZWAAGSTRA, B. (1989) Dendrites of cat's spinal motoneurones: Relationship between stem diameter and predicted input conductance. Journal of Physiology (London) 413, 255–269.

    Google Scholar 

  • KOROGOD, S., BRAS, H., SARANA, V. N., GOGAN, P. & TYC-DUMONT, S. (1994) Electrotonic clusters in the dendritic arborization of abducens motoneurons of the rat. European Journal of Neuroscience 6, 1517– 1527.

    Google Scholar 

  • KOROGOD, S. M., KOPYSOVA, I. L., BRAS, H., GOGAN, P. & TYC-DUMONT, S. (1996) Differential backinvasion of a single complex dendrite of an abducens motoneuron by N-methyl-D-aspartate-induced oscillations: A simulation study. Neuroscience 75, 1153– 1163.

    Google Scholar 

  • KOROGOD, S. M., KULAGINA, I. B., HORCHOLLEBOSSAVIT, G., GOGAN, P. & TYC-DUMONT, S. (2000) Activity-dependent reconfiguration of the effective dendritic field of motoneurons. Journal of Comparative Neurology 422, 18–34.

    Google Scholar 

  • LAGERBACK, P. A. (1985) An ultrastructural study of cat lumbosacral gamma-motoneurons after retrograde labelling with horseradish peroxidase. Journal of Comparative Neurology 240, 256–264.

    Google Scholar 

  • LAGERBACK, P. A. & ULFHAKE, B. (1987) Ultrastructural observations on beaded alpha-motoneuron dendrites. Acta Physiologica Scandinavica 129, 61–66.

    Google Scholar 

  • LAHJOUJI, F., BARBE, A., CHAZAL, G. & BRAS, H. (1996) Evidence for colocalization of GABA and glycine in afferents to retrogradely labelled rat abducens motoneurones. Neuroscience Letters 206, 161–164.

    Google Scholar 

  • LAHJOUJI, F., BRAS, H., BARBE, A. & CHAZAL, G. (1995) GABAergic innervation of rat abducens motoneurons retrogradely labelled with HRP: Quantitative ultrastuctural analysis of cell bodies and proximal dendrites. Journal of Neurocytology 24, 29–44.

    Google Scholar 

  • LAHJOUJI, F., BRAS, H., BARBE, A., CHMYKHOVA, N. & CHAZAL, G. (1997) Electron microscopic serial analysis of GABA presynaptic terminals on the axon hillock and initial segment of labeled abducens motoneurons in the rat. Neuroscience Research 27, 143–153.

    Google Scholar 

  • LÓPEZ-BARNEO, J., DARLOT, C., BERTHOZ, A. & BAKER, R. (1982) Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat. Journal of Neurophysiology 47, 329–352.

    Google Scholar 

  • MOORE, J. A. & APPENTENG, K. (1991) The morphology and electrical geometry of rat jaw-elevator motoneurones. Journal of Physiology (London) 440, 325–343.

    Google Scholar 

  • ORNUNG, G., OTTERSEN, O. P., CULLHEIM, S. & ULFHAKE, B. (1998) Distribution of glutamate-, glycine-and GABA-immunoreactive nerve terminals on dendrites in the cat spinal motor nucleus. Experimental Brain Research 118, 517–532.

    Google Scholar 

  • PARE, D., SHINK, E., GAUDREAU, H., DESTEXHE, A. & LANG, E. J. (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. Journal of Neurophysiology 79, 1450– 1460.

    Google Scholar 

  • RALSTON, H. J. & RALSTON, D. D. (1979) Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography. Journal of Neurocytology 8, 151–166.

    Google Scholar 

  • RAMIREZ-LEON, V. & ULFHAKE, B. (1993) GABA-like immunoreactive innervation and dendro-dendritic contacts in the ventrolateral dendritic bundle in the cat S1 spinal cord segment: An electron microscopic study. Experimental Brain Research 97, 1–12.

    Google Scholar 

  • RICHTER, A. & PRECHT, W. (1968) Inhibition of abducens motoneurones by vestibular nerve stimulation. Brain Research 11, 701–705.

    Google Scholar 

  • ROSE, P. K. (1982) Branching structure of motoneuron stem dendrites: A study of neck muscle motoneurons intracellularly stained with horseradish peroxidase in the cat. Journal of Neuroscience 2, 1596–1607.

    Google Scholar 

  • ROSE, P. K., KEIRSTEAD, S. A. & VANNER, S. J. (1985) A quantitative analysis of the geometry of cat motoneurons innervating neck and shoulder muscles. Journal of Comparative Neurology 239, 89–107.

    Google Scholar 

  • ROSE, P. K. & NEUBER-HESS, M. (1991) Morphology and frequency of axon terminals on the somata, proximal dendrites, and distal dendrites of dorsal neck motoneurons in the cat. Journal of Comparative Neurology 307, 259–280.

    Google Scholar 

  • SCHEIBEL, M. E. & SCHEIBEL, A. B. (1970) Of pattern and place in dendrites. International Revue of Neurobiology 13, 1–26.

    Google Scholar 

  • SCHMITT, F. O., DEV, P. & SMITH, B. H. (1976) Electronic processing of information by brain cells. Science 193, 114–120.

    Google Scholar 

  • SPENCER, R. F. & STERLING, P. (1977) An electron microscope study of motoneurons and interneurons in the cat abducens nucleus identified by retrograde intraaxonal transport of horseradish peroxidase. Journal of Comparative Neurology 176, 65–86.

    Google Scholar 

  • UCHIZONO, K. (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207, 642–643.

    Google Scholar 

  • ULFHAKE, B. & KELLERTH, J. O. (1984) Electrophysiological and morphological measurements in cat gastrocnemius and soleus alpha-motoneurones. Brain Research 307, 167–179.

    Google Scholar 

  • WALBERG, F., OTTERSEN, O. P. & RINVIK, E. (1990) GABA, glycine, aspartate, glutamate and taurine in the vestibular nuclei:Animmunocytochemical investigation in the cat. Experimental Brain Research 79, 547–563.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bras, H., Lahjouji, F., Korogod, S.M. et al. Heterogeneous synaptic covering and differential charge transfer sensitivity among the dendrites of a reconstructed abducens motor neurone: Correlations between electron microscopic and computer simulation data. J Neurocytol 32, 5–24 (2003). https://doi.org/10.1023/A:1027307714085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027307714085

Keywords

Navigation