Skip to main content
Log in

Functional roles of glycosphingolipids in signal transduction via lipid rafts

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The formation of glycosphingolipid (GSL)-cholesterol microdomains in cell membranes has been proposed to function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are postulated to be involved in GPI-anchored protein signaling via src-family kinase. Here, the functional roles of GSLs in signal transduction mediated by the microdomains are discussed. Antibodies against GSLs co-precipitate GPI-anchored proteins, src-family kinases and several components of the microdomains. Antibody-mediated crosslinking of GSLs, as well as that of GPI-anchored proteins, induces a rapid activation of src-family kinases and a transient increase in the tyrosine phosphorylation of several substrates. Enzymatic degradation of GSLs reduces the activation of src-family kinase and tyrosine phosphorylation by antibody-mediated crosslinking of GPI-anchored protein. Furthermore, GSLs can also modulate signal transduction of immunoreceptors and growth factor receptors in the microdomains. Thus, GSLs have important roles in signal transduction mediated by the microdomains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hakomori S, Ann Rev Biochem 50, 733–64 (1981).

    Google Scholar 

  2. Fishman PH, Brady RO, Science 194, 906–15 (1976).

    Google Scholar 

  3. Yamakawa T, Nagai Y, Trends Biochem Sci 3, 128–31 (1978).

    Google Scholar 

  4. Tettamanti G, Riboni L, Prog Brain Res 101, 77–100 (1994).

    Google Scholar 

  5. Hakomori S, J Biol Chem 265, 18713–6(1990).

    Google Scholar 

  6. Hakomori S, Igarashi Y, J Biochem 118, 1091–1103 (1995).

    Google Scholar 

  7. Simons K, lkonen E, Nature 387, 569–72 (1997).

    Google Scholar 

  8. Brown DA, London E, Annu Rev Cell Dev Biol 14, 111–36 (1998).

    Google Scholar 

  9. Anderson RGW, Annu Rev Biochem, 67, 199–225 (1998).

    Google Scholar 

  10. Okamoto T, Schlegel A, Scherer PE, Lisanti M, J Biol Chem, 273, 5419–22 (1998).

    Google Scholar 

  11. Masserini M, Palestini P, Pitto M, J Neurochem 73, 1–11 (1999).

    Google Scholar 

  12. Kurzchalia TV, Parton RG, Curr Opin Cell Biol 11, 424–31 (1999).

    Google Scholar 

  13. Anderson RGW, Proc Natl Acad Sci USA 90, 10909–13 (1993).

    Google Scholar 

  14. Lisanti MP, Scherer PE, Tang Z-L, Sargiacomo M, Trends Cell Biol 4, 231–35 (1994).

    Google Scholar 

  15. Brown RE, J Cell Sci 111, 1–9 (1998).

    Google Scholar 

  16. Futerman AH, Trends Cell Biol 5, 377–80 (1995).

    Google Scholar 

  17. Hakomori S, Handa K, Iwabuchi K, Yamamura S, Prinetti A, Glycobiology 8, (10) pp. xi-xix (1998).

    Google Scholar 

  18. Kasahara K, Sanai Y, Biophys Chem 82, 121–7 (1999).

    Google Scholar 

  19. Kusumi A, Sako Y, Curr Opin Cell Biol 8, 566–74 (1996).

    Google Scholar 

  20. Jacobson K, Dietrich C, Trends Cell Biol 9, 87–91 (1999).

    Google Scholar 

  21. Varma R, Mayor S, Nature 394, 798–801 (1998).

    Google Scholar 

  22. Friedrichson T, Kurzchalia TV, Nature 394, 802–5 (1998).

    Google Scholar 

  23. Rahmann H, Rösner H, Körtje K-H, Beitinger H, Veybold V, In Svennerholm L, Asbury AK, Reisfeld RA, Sandhoff K, Suzuki K, Tettamanti G, Toffano G (eds.) Progress in Brain Research Vol. 101 (Elsevier 1994), pp 127–45.

  24. Rock P, Allietta M, Young WWJ, Thompson TE, Tillack TW, Biochemistry 29, 8484–90 (1990).

    Google Scholar 

  25. Sorice M, Parolini I, Sansolini T, Garofalo T, Dolo V, Sargiacomo M, Tai T, Reschle C, Torrisi MR, Pavan A, J Lipid Res 38, 969–80 (1997).

    Google Scholar 

  26. Lasley RD, Narayan P, Uittenbogaard A, Smart EJ, J Biol Chem 275, 4417–21 (2000).

    Google Scholar 

  27. Rodgers W, Rose JK, J Cell Biol 135, 1515–23 (1996).

    Google Scholar 

  28. Moffett S, Brown DA, Linder ME, J Biol Chem 275, 2191–8 (2000).

    Google Scholar 

  29. Resh MD, Biochim Biophys Acta 1451, 1–16 (1999).

    Google Scholar 

  30. Arudchandran R, Brown MJ, Peirce MJ, Song JS, Zhang J, Siraganian RP, Blank U, Rivera J, J Exp Med 191, 47–60 (2000).

    Google Scholar 

  31. Robinson PJ, Immunol Today 12, 35–41 (1991).

    Google Scholar 

  32. Hořejší V, Drbal K, Cebecauer M, e>Černý J, Brdička T, Angelisová P, Stockinger H, Immunol Today 20, 356–61 (1999).

    Google Scholar 

  33. Ilangumaran S, He H-T, Hoessli DC, Immunol Today 21, 2–6 (2000).

    Google Scholar 

  34. Harder T, Scheiffele P, Verkade P, Simons K, J Cell Biol 141, 929–42 (1998).

    Google Scholar 

  35. Montixi C, Langlet C, Bernard A, Thimonier J, Dubois C, Wurbel M, Chauvin J, Pierres M, He, H-T, EMBO J 17, 5334–48 (1998).

    Google Scholar 

  36. Xavier R, Brennan, T, Li, Q, McCormack, C, Seed, B, Immunity 8, 723–32 (1998).

    Google Scholar 

  37. Sheets ED, Holowka D, Baird B, Curr Opin Chem Biol 3, 95–9 (1999).

    Google Scholar 

  38. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia, A, Science 283, 680–2 (1999).

    Google Scholar 

  39. Mineo C, James GL, Smart EJ, Anderson RGW, J Biol Chem 271, 11930–5 (1996).

    Google Scholar 

  40. Liu P, Ying Y, Ko Y-G, Anderson RGW, J Biol Chem 271, 10299–303 (1996).

    Google Scholar 

  41. Li S, Seitz R, Lisanti MP, J Biol Chem 271, 3863–8 (1996).

    Google Scholar 

  42. Nomura R, Fujimoto T, Mol Biol Cell 10, 975–86 (1999).

    Google Scholar 

  43. Minoguchi K, Swaim WD, Berenstein EH, Siraganian RP, J Biol Chem 269, 5249–54 (1994).

    Google Scholar 

  44. Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C, Robbins SM, Genes & Dev 13, 3125–35 (1999).

    Google Scholar 

  45. Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T, Sanai Y, J Biol Chem (in press).

  46. Guo N, Her GR, Reinfold VN, Brennan MJ, Siraganian RP, Ginsburg V, J Biol Chem 264, 13267–72 (1989).

    Google Scholar 

  47. Swaim WD, Minoguchi K, Oliver C, Hamawy MM, Kihara H, Stephan V, Berenstein EH, Siraganian RP, J Biol Chem 269, 19466–73 (1994).

    Google Scholar 

  48. Woldemussie E, Ali H, Takaishi T, Siraganian RP, Beaven MA, J Immunol 139, 2431–8 (1987).

    Google Scholar 

  49. Stephan V, Guo N, Ginsburg V, Siraganian R P, J Immunol 146, 4271–7 (1991).

    Google Scholar 

  50. Zuberbier T, Pfrommer C, Beinholzl J, Hartmann K, Ricklinkat J, Czarnetzki BM, Biochim Biophys Acta 1269, 79–84 (1995).

    Google Scholar 

  51. Bremer EG, Schlessinger J, Hakomori S, J Biol Chem 261, 2434–40 (1986).

    Google Scholar 

  52. Yates AJ, VanBrocklyn J, Saqr HE, Guan Z, Stokes BT, O'Dorisio MS, Exp Cell Res 204, 38–45 (1993).

    Google Scholar 

  53. Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N, Proc Natl Acad Sci USA 92, 5087–91 (1995).

    Google Scholar 

  54. Hilbush BS, Levine JM, J Biol Chem 267, 24789–95 (1992).

    Google Scholar 

  55. Weis FMB, Davis RJ, J Biol Chem 265, 12059–66 (1990).

    Google Scholar 

  56. Pitto M, Mutoh T, Kuriyama M, Ferraretto A, Palestini P, Messerini M, FEBS Lett 439, 93–6 (1998).

    Google Scholar 

  57. Claro E, Wallace MA, Fain JN, Nair BG, Patel TB, Shanker G, Baker H-J, Brain Res Mol Brain Res 11, 265–71 (1991).

    Google Scholar 

  58. Hanada K, Nishijima M, Akamatsu Y, Pagano RE, J Biol Chem 270, 6254–60 (1995).

    Google Scholar 

  59. Sheets ED, Lee GM, Simson R, Jacobson K, Biochemistry 36, 12449–58 (1997).

    Google Scholar 

  60. Simons M, Friedrichson T, Schulz JB, Pitto M, Masserini M, Kurzchalia TV, Mol Biol Cell 10, 3187–96 (1999).

    Google Scholar 

  61. Ichikawa S, Nakajo N, Sakiyama H, Hirabayashi Y, Proc Natl Acad Sci USA 91, 2703–7 (1994).

    Google Scholar 

  62. Ostermeyer AG, Beckrich BT, Ivarson KA, Grove KE, Brown DA, J Biol Chem 274, 34459–66 (1999).

    Google Scholar 

  63. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL, Proc Natl Acad Sci USA 96, 9142–7 (1999).

    Google Scholar 

  64. Kasahara K,Watanabe Y, Yamamoto T, Sanai Y, J Biol Chem 272, 29947–53 (1997).

    Google Scholar 

  65. Thomas ML, Brown EJ, Immunol Today 20, 406–11 (1999).

    Google Scholar 

  66. Dorahy DJ, Burns GF, Biochem J 333, 373–9 (1998).

    Google Scholar 

  67. Lasky LA, Ann Rev Biochem 64, 113–39 (1995).

    Google Scholar 

  68. Hashimoto Y, Suzuki M, Crocker PR, Suzuki A, J Biochem 123, 468–78 (1998).

    Google Scholar 

  69. Schnaar RL, Collins BE, Wright LP, Kiso M, Yropak MB, Roder JC, Crocker PR, Ann NY Acad Sci 845, 92–105 (1998).

    Google Scholar 

  70. Tiemeyer M, Goodman CS, Development 122, 925–36 (1996).

    Google Scholar 

  71. Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius H-J, J Biol Chem 273, 11205–11 (1998).

    Google Scholar 

  72. Gouy H, Debré P, Bismuth G, J Immunol 155 5160–6 (1995).

    Google Scholar 

  73. Prinetti A, Iwabuchi K, Hakomori S, J Biol Chem 274, 20916–24 (1999).

    Google Scholar 

  74. Palestini P, Pitto M, Ferraretto A, Tettamanti G, Masserini M, Biochemistry 37, 3143–8 (1998).

    Google Scholar 

  75. Pitto M, Palestini P, Ferraretto A, Flati S, Pavan A, Ravasi D, Masserini M, Bottiroli G, Biochem J 344, 177–84 (1999).

    Google Scholar 

  76. Smart EJ, Foster D, Ying Y-S, Kamen BA, Anderson RGW, J Cel Biol 124, 307–13 (1993).

    Google Scholar 

  77. Wang LH, Tu YP, Yang XY, Tsui ZC, Yang FY, FEBS Lett 388, 128–30 (1996).

    Google Scholar 

  78. Hara-Yokoyama M, Kukimoto I, Nishina H, Kontani K, Hirabayashi Y, Irie F, Sugiya H, Furuyama S, Katada T, J Biol Chem 271, 12951–5 (1996).

    Google Scholar 

  79. Rösner H, Al-Aqtum M, Rahmann H, Neurochem Int 20, 339–51 (1992).

    Google Scholar 

  80. Tai T, Kotani M, Kawashima I, Acta Histochem Cytochem 32, 215–22 (1999).

    Google Scholar 

  81. Lloyd KO, Furukawa K, Glycoconj J 15, 627–636 (1998).

    Google Scholar 

  82. Purpura DP, Nature 276, 520–1 (1978).

    Google Scholar 

  83. Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF, Brain Res 261, 163–6 (1983).

    Google Scholar 

  84. Roisen FJ, Bartfeld H, Nagele R, Yorke G, Science 214, 577–8 (1981).

    Google Scholar 

  85. Ledeen RW, J Neurosci Res 12, 147–59 (1984).

    Google Scholar 

  86. Skaper SD, Katoh-Semba R, Varon S, Brain Res 355 19–26 (1985).

    Google Scholar 

  87. Schwarz A, Rapaport E, Hirschberg K, Futerman AH, J Biol Chem 270, 10990–98 (1995).

    Google Scholar 

  88. Fukumoto S, Mutoh T, Hasegawa T, Miyazaki H, Okada M, Goto G, Furukawa K, Urano T, Furukawa K, J Biol Chem 275, 5832–8 (2000).

    Google Scholar 

  89. Kojima N, Kurosawa N, Nishi T, Hanai N, Tsuji S, J Biol Chem 269, 30451–6 (1994).

    Google Scholar 

  90. Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, Griffin JW, Schnaar RL, Proc Natl Acad Sci USA 96, 7532–7 (1999).

    Google Scholar 

  91. Krämer E, Koch T, Niehaus A, Trotter J, J Biol Chem 272, 8937–45 (1997).

    Google Scholar 

  92. Krämer E, Klein C, Koch T, Boytinck M, Trotter J, J Biol Chem 274, 29042–9 (1999).

    Google Scholar 

  93. Dyer CA, Benjamins JA, J Cell Biol 111, 625–33 (1990).

    Google Scholar 

  94. Bansal R, Pfeiffer SE, Proc Natl Acad Sci USA 86, 6181–5 (1989).

    Google Scholar 

  95. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B, Cell 86, 209–19 (1996).

    Google Scholar 

  96. Bosio A, Binczek E, Stoffel W, Proc Natl Acad Sci USA 93, 13280–85 (1996).

    Google Scholar 

  97. Iwabuchi K, Handa K, Hakomori S, J Biol Chem 273, 33766–73 (1998).

    Google Scholar 

  98. Ledesma MD, Brügger B, Bünning C, Wieland FT, Dotti CG, EMBO J 18, 1761–71 (1999).

    Google Scholar 

  99. Madore N, Smith KL, Graham CH, Jen A, Brady K, Hall S, Morris R, EMBO J 18, 6917–26 (1999).

    Google Scholar 

  100. Wu C, Butz S, Ying Y-S, Anderson RGW, J Biol Chem 272, 3554–9 (1997).

    Google Scholar 

  101. Yamamoto M, Toya Y, Schwencke C, Lisanti M, Myers Jr, MG, Ishikawa Y, J Biol Chem 273, 26963–8 (1998).

    Google Scholar 

  102. Huang CS, Zhou J, Feng AK, Lynch CC, Klumperman J, DeArmond SJ, Mobley WC, J Biol Chem 274, 36707–14 (1999).

    Google Scholar 

  103. Ko YG, Lee JS, Kang YS, Seo JS, J Immunol 162, 7217–23 (1999).

    Google Scholar 

  104. Feron O, Smith TW, Michel T, Kelly RA, J Biol Chem 272, 17744–48 (1997).

    Google Scholar 

  105. Ishizaka N, Griendling KK, Lassegue B, Alexander RW, Hypertension 32, 459–66 (1998).

    Google Scholar 

  106. de Weerd WFC, Leeb-Lundberg LMF, J Biol Chem 272, 17858–66 (1997).

    Google Scholar 

  107. Dupree P, Parton RG, Raposo G, Kurzchalia TV, Simons K, EMBO J 12, 1597–1605 (1993).

    Google Scholar 

  108. Kifor O, Diaz R, Butters R, Kifor I, Brown EM, J Biol Chem 273, 21708–13 (1998).

    Google Scholar 

  109. Teixeira A, Chaverrot N, Schroder C, Strosberg AD, Couraud PO, Cazaubon S, J Neurochem 72, 120–8 (1999).

    Google Scholar 

  110. Sheets ED, Holowka D, Baird B, J Cell Biol145, 877–87 (1999).

    Google Scholar 

  111. Surviladze Z, Dráberová L, Kubínová L, Dráber P, Eur J Immunol 28, 1847–58 (1998).

    Google Scholar 

  112. e>Černý J, Stockinger H, Hořejší V, Eur J Immunol 26, 2335–43 (1996).

    Google Scholar 

  113. Kniep B, Cinek T, Angelisová P, Hořejší V, Biochem Biophys Res Commun 203 1069–75 (1994).

    Google Scholar 

  114. Olive S, Dubois C, Schachner M, Rougon G, J Neurochem 65, 2307–17 (1995).

    Google Scholar 

  115. Schnitzer JE, Oh P, Jacobson BS, Dvorak AM, Proc Natl Acad Sci USA 92, 1759–63 (1995).

    Google Scholar 

  116. Mineo C, Anderson RGW, Exp Cell Res 224, 237–42 (1996).

    Google Scholar 

  117. Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M, J Cell Biol 126, 111–26 (1994).

    Google Scholar 

  118. Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S, J Biol Chem 273, 9130–8 (1998).

    Google Scholar 

  119. Satoh M, Nejad FM, Ohtani H, Ito A, Ohyama C, Saito S, Orikasa S, Hakomori S, Int J Oncol 16, 529–36 (2000).

    Google Scholar 

  120. Katagiri YU, Mori T, Hakajima H, Katagiri C, Taguchi T, Takeda T, Kiyokawa N, Fujimoto J, J Biol Chem 273, 35278–82 (1999).

    Google Scholar 

  121. Michaely PA, Mineo C, Ying YS, Anderson RGW, J Biol Chem 274, 21430–6 (1999).

    Google Scholar 

  122. Perez AS, Bredt DS, Neurosci Lett 258, 121–3 (1998).

    Google Scholar 

  123. Brückner K, Labrador JP, Scheiffele P, Herb A, Seeburg PH, Klein R, Neuron 22, 511–24 (1999).

    Google Scholar 

  124. Huang C, Hepler JR, Chen LT, Gilman AG, Anderson RGW, Mumby SM, Mol Biol Cell 8, 2365–78 (1997).

    Google Scholar 

  125. Czarny M, Lavie Y, Fiucci G, Liscovitch M, J Biol Chem 274, 2717–24 (1999).

    Google Scholar 

  126. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying YS, Anderson RGW, Michel T, J Biol Chem 271, 6518–22 (1996).

    Google Scholar 

  127. Maekawa S, Kumanogoh H, Funatsu N, Takei N, Inoue K, Endo Y, Hamada K, Sokawa Y, Biochim Biophys Acta 1323, 1–5 (1997).

    Google Scholar 

  128. Zhang W, Trible RP, Samelson LE, Immunity 9, 239–46 (1998).

    Google Scholar 

  129. Waugh MG, Lawson D, Tan SK, Hsuan JJ, J Biol Chem 273, 17115–21 (1998).

    Google Scholar 

  130. Liu P, Anderson RGW, J Biol Chem 270, 27179–85 (1995).

    Google Scholar 

  131. Bhunia AK, Han H, Snowden A, Chatterjee S, J Biol Chem 271, 10660–6 (1996).

    Google Scholar 

  132. Chatterjee D, Chakraborty M, Anderson GM, Brain Res 583, 31–44 (1992).

    Google Scholar 

  133. Golard A, Glycobiology 8, 1221–5 (1998).

    Google Scholar 

  134. Garofalo T, Sorice M, Misasi R, Cinque B, Giammatteo M, Pontieri GM, Cifone MG, Pavan A, J Biol Chem 273, 35153–60 (1998).

    Google Scholar 

  135. Yatomi Y, Igarashi Y, Hakomori S, Glycobiology 6, 347–53 (1996).

    Google Scholar 

  136. Ortaldo JR, Mason AT, Longo DL, Beckwith M, Creekmore SP, McVicar DW, J Leukocyte Biol 60, 533–9 (1996).

    Google Scholar 

  137. Reivinen J, Holthofer H, Miettinen A, Scand J Immunol 48, 615–22 (1998).

    Google Scholar 

  138. Gouy H, Deterre P, Debré P, Bismuth G, J Immunol 152, 3271–81 (1994).

    Google Scholar 

  139. Janes PW, Ley SC, Magee AI, J Cell Biol 147, 447–61 (1999).

    Google Scholar 

  140. Dixon SJ, Stewart D, Grinstein S, Spiegel S, J Cell Biol 105, 1153–61 (1987).

    Google Scholar 

  141. Carlson RO, Masco D, Brooker G, Spiegel S, J Neurosci 14 2272–81 (1994).

    Google Scholar 

  142. Fan S-F, Wang S, Kao CY, Biochem Biophys Res Commun 200, 1341–5 (1994).

    Google Scholar 

  143. van Brocklyn JR, Vandenheede JR, Fertel R, Yates AJ, Rampersaud AA, J Neurochem 69, 116–25 (1997).

    Google Scholar 

  144. Saito M, Frielle T, Benovic JL, Ledeen RW, Biochim Biophys Acta 1267, 1–5 (1995).

    Google Scholar 

  145. Katoh N, Miyamoto T, Lipids 31, 983–7 (1996).

    Google Scholar 

  146. Tsuji S, Yamashita T, Nagai Y, J Biochem 104, 498–503 (1988).

    Google Scholar 

  147. Yada Y, Okano Y, Nozawa Y, Biochem J 279, 665–70 (1991).

    Google Scholar 

  148. Taga S, Carlier K, Mishal Z, Capoulade C, Mangeney M, Lécluse Y, Coulaud D, Tétaud C, Pritchard LL, Tursz T, Wiels J, Blood 90, 2757–67 (1997).

    Google Scholar 

  149. Nojiri H, Stroud M, Hakomori S, J Biol Chem 266, 4531–7 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasahara, K., Sanai, Y. Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj J 17, 153–162 (2000). https://doi.org/10.1023/A:1026576804247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026576804247

Navigation