Skip to main content
Log in

The Influence of 2-Propanol and Acetone on Oviposition Rate and Oviposition Site Preference for Acetic Acid and Ethanol of Drosophila melanogaster

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Drosophila melanogaster strains, homozygous for the alcohol dehydrogenase alleles Adh F, Adh S, and Adh n4 respectively, were tested for oviposition site preference with a Multiple Choice Device consisting of 18 patches per choice disk. Equal numbers of patches with ethanol-, acetic acid-, and water-supplemented medium were offered simultaneously. Patches with acetic acid-supplemented medium were chosen predominantly as oviposition sites. Pretreatment of flies with increasing concentrations of 2-propanol to inhibit alcohol dehydrogenase (ADH) activity resulted not only in a decreasing choice of acetic acid patches, but also in the laying of a decreasing number of eggs. Adh-null mutant flies showed a similar change in behavior pattern after 2-propanol treatment. Therefore it was concluded that ADH activity is not involved primarily in oviposition site preference behavior. A complicating factor is acetone, the oxidation product of 2-propanol, which had an even larger impact on egg production. However, differences in ADH allozymes with respect to biochemical oxidation capacity of secondary alcohols will not necessarily lead to differences between the Adh genotypes in oviposition rates or apparent changes in preferences, due to additional biochemical differences in inhibition rates by acetone of the various allozymes and other enzyme systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alcorta, E., and Rubio, J. (1989). Intrapopulational variation of olfactory responses in Drosophila melanogaster. Behav. Genet. 19:285–299.

    Google Scholar 

  • Anderson, S. M., and McDonald, J. F. (1981). Effect of environmental alcohol on in vivo properties of Drosophila alcohol dehydrogenase. Biochem. Genet. 19:421–430.

    Google Scholar 

  • Atrian, S., and Gonzàlez-Duarte, R. (1985). An aldo-keto reductase activity in Drosophila melanogaster and Drosophila hydei: A possible function in alcohol metabolism. Comp. Biochem. Physiol. 81B:949–952.

    Google Scholar 

  • Barrows, W. M. (1907). The reactions of the pomace fly, Drosophila ampelophila Loew, to odorous substances. J. Exp. Zool. 4:515–537.

    Google Scholar 

  • Bruins, B. G. (1996). Light-Induced Mortality in Drosophila melanogaster, Thesis, Universiteit Utrecht, Utrecht.

  • Cavener, D. (1979). Preference for ethanol in Drosophila melanogaster associated with the alcohol dehydrogenase polymorphism. Behav. Genet. 9:359–365.

    Google Scholar 

  • Chakir, M., Pery, O., Capy, P., Pla, E., and David, J. R. (1993). Adaptation to alcoholic fermentation in Drosophila: A parallel selection imposed by environmental ethanol and acetic acid. Proc. Natl. Acad. Sci. USA 90:3621–3625.

    Google Scholar 

  • Chakir, M., Capy, P., Pla, E., Vouidibio, J., and David, J. R. (1994). Ethanol and acetic acid tolerances in Drosophila melanogaster: Similar maternal effects in a cross between 2 geographic races. Genet. Sel. Evol. 26:29–37.

    Google Scholar 

  • Chambers, G. K. (1988). The Drosophila alcohol dehydrogenase gene-enzyme system. Adv. Genet. 25:39–107.

    Google Scholar 

  • Eisses, K. Th. (1989a). On the oxidation of aldehydes by alcohol dehydrogenase of Drosophila melanogaster: Evidence for the gem-diol as the reacting substrate. Bioorg. Chem. 17:268–274.

    Google Scholar 

  • Eisses, K. Th. (1989b). Teratogenicity and toxicity of ethylene glycol monomethyl ether (2-methoxyethanol) in Drosophila melanogaster: Involvement of alcohol dehydrogenase activity. Teratogen, Carcinogen. Mutagen. 9:315–325.

    Google Scholar 

  • Eisses, K. Th. (1991). A multiple choice device for measuring larval and adult food preference. Dros. Inform. Serv. 70:241–242.

    Google Scholar 

  • Eisses, K. Th. (1994). Differences in teratogenic and toxic properties of alcohol dehydrogenase inhibitors pyrazole and 4-methylpyrazole in Drosophila melanogaster: II. ADH allozymes in an isogenic background. Teratogenesis Carcinogen. Mutagen. 14:291–302.

    Google Scholar 

  • Eisses, K. Th., and Bets, P. (1992). Attraction of Drosophila melanogaster toward acetic acid and ethanol dependent on alcohol dehydrogenase alleles. Dros. Inform. Serv. 71:188–189.

    Google Scholar 

  • Eisses, K. Th., and Den Boer, A. A. (1995). Acetic acid tolerance in Drosophila melanogaster is a prerequisite for ethanol tolerance. J. Evol. Biol. 8:481–491.

    Google Scholar 

  • Eisses, K. Th., Schoonen, W. G. E. J., Aben, W., Scharloo, W., and Thörig, G. E. W. (1985). Dual function of the alcohol dehydrogenase of Drosophila melanogaster: Ethanol and acetaldehyde oxidation by the two allozymes ADH-71k and ADH-F. Mol. Gen. Genet. 199:76–81.

    Google Scholar 

  • Eisses, K. Th., Davies, S. L., and Chambers, G. K. (1994). Substrate and inhibitor specificities of the thermostable alcohol dehydrogenase variants ADH-71k and ADH-FCh.D. of Drosophila melanogaster. Biochem. Genet. 32:91–103.

    Google Scholar 

  • Emans, H. J., and Eisses, K. Th. (1992). Acetic acid: A neglected selective force on Adh polymorphism in Drosophila melanogaster. Dros. Inform. Serv. 71:191–192.

    Google Scholar 

  • Freriksen, A., De Ruiter, B. L. A., Groenenberg, H.-J., Scharloo, W., and Heinstra, P. W. H. (1994). A multilevel approach to the significance of genetic variation in alcohol dehydrogenase of Drosophila. Evolution 48:781–790.

    Google Scholar 

  • Fuyama, Y. (1976). Behavior genetics of olfactory responses in Drosophila. I. Olfactometry and strain differences in Drosophila melanogaster. Behav. Genet. 6:407–420.

    Google Scholar 

  • Fuyama, Y. (1978). Behavior genetics of olfactory responses in Drosophila. II. An odorant-specific variant in a natural population of Drosophila melanogaster Behav. Genet. 8:399–414.

    Google Scholar 

  • Gelfand, L. J., and McDonald, J. F. (1980). Relationship between ADH activity and behavioral response to environmental alcohol in Drosophila. Behav. Genet. 10:237–249.

    Google Scholar 

  • Gelfand, L. J., and McDonald, J. F. (1983). Relationship between alcohol dehydrogenase (ADH) activity and behavioral response to environmental alcohol in five Drosophila species. Behav. Genet. 13:281–293.

    Google Scholar 

  • Gonzàlez-Duarte, R., and Atrian, S. (1986). Metabolic response to alcohol ingestion in Drosophila hydei. Heredity 56:123–128.

    Google Scholar 

  • Gonzàlez-Duarte, R., and Vilageliu, LI. (1985). Metabolic response to ethanol and isopropanol in D. funebris and D. immigrans. Comp. Biochem. Physiol. 80C:189–193.

    Google Scholar 

  • Hageman, J., Eisses, K. Th., Jacobs, P. J. M., and Scharloo, W. (1990). Ethanol in Drosophila cultures as a selective factor. Evolution 44:447–454.

    Google Scholar 

  • Heinstra, P. W. H. (1993). Evolutionary genetics of the Drosophila alcohol dehydrogenase gene enzyme system. Genetica 92:1–22.

    Google Scholar 

  • Heinstra, P. W. H., Eisses, K. Th., Schoonen, W. G. E. J., Aben, W., de Winter, A. J., van der Horst, D. J., van Marrewijk, W. J. A., Beenakkers, A. M. Th., Scharloo, W., and Thörig, G. E. W. (1983). A dual function of alcohol dehydrogenase in Drosophila melanogaster. Genetica 60:129–137.

    Google Scholar 

  • Heinstra, P. W. H., Scharloo, W., and Thörig, G. E. W. (1986a). Alcohol dehydrogenase of Drosophila: Conversion and retroconversion of isozyme patterns. Comp. Biochem. Physiol. 83B:409–414.

    Google Scholar 

  • Heinstra, P. W. H., Aben, W. J. M., Scharloo, W., and Thörig, G. E. W. (1986b). Alcohol dehydrogenase of Drosophila: Metabolic differences mediated through cryptic allozymes. Heridity 57:23–29.

    Google Scholar 

  • Heinstra, P. W. H., Scharloo, W., and Thörig, G. E. W. (1987). Physiological significance of the alcohol dehydrogenase polymorphism in larvae of Drosophila. Genetics 117:75–84.

    Google Scholar 

  • Hoffmann, A. A. (1983). Bidirectional selection for olfactory response to acetaldehyde and ethanol in Drosophila melanogaster. Génét. Sél. Evol. 15:501–518.

    Google Scholar 

  • Hoffmann, A. A. (1985). Interspecific variation in the response of Drosophila to chemicals and fruit odors in a wind tunnel. Aust. J. Zool. 33:451–460.

    Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A. (1984). Olfactory response and resource utilization in Drosophila interspecific comparisons. Biol. J. Linn. Soc. 22:43–53.

    Google Scholar 

  • Hougouto, N., Liétaert, M. C., Libion-Mannaert, M., Feytmans, E., and Elens, A. (1982). Oviposition site preference and ADH activity in Drosophila melanogaster. Genetica 58:121–128.

    Google Scholar 

  • Jaenike, J. (1982). Environmental modification of oviposition behavior in Drosophila. Am. Nat. 119:784–802.

    Google Scholar 

  • Kerver, J. W. M., and Van Delden, W. (1985). Development of tolerance to ethanol in relation to the alcohol dehydrogenase locus in Drosophila melanogaster. 1. Adult and egg-to-adult survival in relation to ADH activity. Heredity 55:355–367.

    Google Scholar 

  • McKechnie, S. W., and Geer, B. W. (1984). Regulation of alcohol dehydrogenase in Drosophila melanogaster by dietary alcohol and carbohydrate. Insect Biochem. 14:231–242.

    Google Scholar 

  • McKenzie, J. A., and McKechnie, S. W. (1979). A comparative study of resource utilization in natural populations of Drosophila melanogaster and D. simulans. Oecologia 40:299–309.

    Google Scholar 

  • Papel, I., Henderson, M., Van Herrewege, J., David, J., and Sofer, W. (1979). Drosophila alcohol dehydrogenase activity in vitro and in vivo: Effects of acetone feeding. Biochem. Genet. 17:553–563.

    Google Scholar 

  • Parsons, P. A. (1979). Larval reactions to possible resources in three species of Drosophila as indicators of ecological diversity. Aust. J. Zool. 27:413–419.

    Google Scholar 

  • Parsons, P. A. (1982). Acetic acid vapour as a resource and stress in Drosophila. Aust. J. Zool. 30:427–433.

    Google Scholar 

  • Parsons, P. A., and Spence, G. E. (1981). Longevity, resource utilization and larval preferences in Drosophila: Inter-and intraspecific variation. Aust. J. Zool. 29:671–678.

    Google Scholar 

  • Pellica, J. G., and Sofer, W. (1982). Synthesis and degradation of alcohol dehydrogenase in wild-type and Adh-null activity mutants of Drosophila melanogaster. Biochem. Genet. 20:297–313.

    Google Scholar 

  • Reed, M. R. (1938). The olfactory reactions of Drosophila melanogaster Meigen to the products of fermenting banana. Physiol. Zool. 11:317–325.

    Google Scholar 

  • Richmond, R. C., and Gerking, J. L. (1979). Oviposition site preference in Drosophila. Behav. Genet. 9:233–241.

    Google Scholar 

  • Rodrigues, V. (1980). Olfactory behavior of Drosophila melanogaster. In Siddiqi, O., Babu, P., Hall, L. M., and Hall, J. C. (eds.), Development and Neurobiology of Drosophila, Plenum Press, New York, London, pp. 361–371.

    Google Scholar 

  • Sax, N. I., and Lewis, R. J., Sr. (1989). Dangerous Properties of Industrial Materials II. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Schwartz, M., and Sofer, W. (1976). Diet-induced alterations in distribution of multiple forms of alcohol dehydrogenase in Drosophila. Nature 263:129–131.

    Google Scholar 

  • Schwartz, M., O'Donnell, J., and Sofer, W. (1979). Origin of the multiple forms of alcohol dehydrogenase in Drosophila melanogaster. Arch. Biochem. Biophys. 194:365–378.

    Google Scholar 

  • Soliman, M. H., and Knight, M.-L. (1984). Olfactory responses to alcohols by adults of sympatric populations of Drosophila melanogaster and Drosophila simulans. Behav. Genet. 14:295–313.

    Google Scholar 

  • Van Delden, W. (1982). The alcohol dehydrogenase polymorphism in Drosophila melanogaster. Selection at an enzyme locus. Evol. Biol. 15:187–222.

    Google Scholar 

  • Vilageliu Argés, LI., and Gonzalez-Duarte, R. (1980). Effect of ethanol and isopropanol on the activity of alocohol dehydrogenase, viability and lifespan in Drosophila melanogaster and Drosophila funebris. Experientia 36:828–830.

    Google Scholar 

  • Winberg, J. O. and McKinley-McKee, J. S. (1994). Drosophila melanogaster alcohol dehydrogenase: Product-inhibition studies. Biochem. J. 301:901–909.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisses, K.T. The Influence of 2-Propanol and Acetone on Oviposition Rate and Oviposition Site Preference for Acetic Acid and Ethanol of Drosophila melanogaster . Behav Genet 27, 171–180 (1997). https://doi.org/10.1023/A:1025697627556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025697627556

Navigation