Skip to main content
Log in

The Ketamine Model of the Near-Death Experience: A Central Role for the N-Methyl-D-Aspartate Receptor

  • Published:
Journal of Near-Death Studies

Abstract

Near-death experiences (NDEs) can be reproduced by ketamine via blockade of receptors in the brain for the neurotransmitter glutamate, the N-methyl-D-aspartate (NMDA) receptors. Conditions that precipitate NDEs, such as hypoxia, ischemia, hypoglycemia, and temporal lobe epilepsy, have been shown to release a flood of glutamate, overactivating NMDA receptors and resulting in neurotoxicity. Ketamine prevents this neurotoxicity. There are substances in the brain that bind to the same receptor site as ketamine. Conditions that trigger a glutamate flood may also trigger a flood of neuroprotective agents that bind to NMDA receptors to protect cells, leading to an altered state of consciousness like that produced by ketamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Psychiatric Association (1994).Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Amiot, J. F., Bouju, P. and Palacci, J. H. (1985). Effect of naloxone on loss of consciousness induced by i.v. ketamine [Letter].British Journal of Anaesthesia, 57, 930.

    Google Scholar 

  • Anis, N. A., Berry, S. C., Burton, N. R. and Lodge, D. (1983). The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate.British Journal of Pharmacology, 79, 565–575.

    Google Scholar 

  • Barnes, D. M. (1988). NMDA receptors trigger excitement.Science, 239, 254–256.

    Google Scholar 

  • Ben-Ari, Y. E. (1985). Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy.Neuroscience, 14, 375–403.

    Google Scholar 

  • Bellville, J. W., and Forrest, W. (1968). Respiratory and subjective effects of d-and l-pentazocine.Clinical Pharmacology and Therapeutics, 9, 142–151.

    Google Scholar 

  • Bennett, D. R., Madsen, J. A., Jordan, W. S., and Wiser, W. C. (1973). Ketamine anesthesia in brain-damaged epileptics: Electroencephalographic and clinical observations.Neurology, 23, 449–450.

    Google Scholar 

  • Benveniste, H., Drejer, J., Schousboe, A. and Diemer, N. H. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during cerebral ischemia monitored by microdialysis.Journal of Neurochemistry, 43, 1369–1374.

    Google Scholar 

  • Blacher, R. S. (1980). The near-death experience [Letter].Journal of the American Medical Association, 244, 30.

    Google Scholar 

  • Carr, D. B. (1981). Endorphins at the approach of death [Letter].Lancet, 1, 390.

    Google Scholar 

  • Carr, D. B. (1989). On the evolving neurobiology of the near-death experience: Comments on “A neurobiological model for near-death experiences.”Journal of Near-Death Studies, 7, 251–254.

    Google Scholar 

  • Celesia, G. G. and Chen, R. (1974). Effects of ketamine on EEG activity in cats and monkeys.Electroencephalography and Clinical Neurophysiology, 37, 345–353.

    Google Scholar 

  • Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system.Neuron, 1, 623–634.

    Google Scholar 

  • Cline, H. T., Debski, E. A., and Constantine-Paton, M. (1987). N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes.Proceedings of the National Academy of Sciences, 84, 4342–4345.

    Google Scholar 

  • Coan, E. J., and Collingridge, G. L. (1987). Effects of phencyclidine, SKF 10,047 and related psychotomimetic agents on N-methyl-D-aspartate receptor mediated synaptic responses in rat hippocampal slices.British Journal of Pharmacology, 91, 547–556.

    Google Scholar 

  • Collier, B. B. (1972). Ketamine and the conscious mind.Anaesthesia, 27, 120–134.

    Google Scholar 

  • Collingridge, G. L. (1987). The role of NMDA receptors in learning and memory.Nature, 330, 604–605.

    Google Scholar 

  • Contreras, P. C., DiMaggio, D. A., and O'Donohue, T. L. (1987). An endogenous ligand for the sigma opioid binding site.Synapse, 1, 57–61.

    Google Scholar 

  • Cotman, C. W., and Monaghan, D. T. (1987). Chemistry and anatomy of excitatory amino acid systems. In H. Y. Meltzer (Ed.),Psychopharmacology: The third generation of progress (pp. 197–218). New York, NY: Raven Press.

    Google Scholar 

  • Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen, J. (1987). Anatomical organization of excitatory amino acid receptors and their pathways.Trends in Neurosciences, 107, 273–279.

    Google Scholar 

  • Cotman, C. W., Monaghan, D. T., and Ganong, A. H. (1988). Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity.Annual Review of Neuroscience, 11, 61–80.

    Google Scholar 

  • Cunningham, B. L., and McKinney, P. (1983). Patient acceptance of dissociative anesthetics.Plastic and Reconstructive Surgery, 72, 22–26.

    Google Scholar 

  • Davies, J., and Watkins, J. C. (1983). Role of excitatory amino acid receptors in mono-and polysynaptic excitation in the cat spinal cord.Experimental Brain Research, 49, 280–290.

    Google Scholar 

  • Domino, E. F., Chodoff, P., and Corssen, G. (1965). Pharmacologic effects of CI-581, a new dissociative anesthetic, in man.Clinical Pharmacology and Therapeutics, 6, 279–291.

    Google Scholar 

  • Fagg, G. E., and Foster, A. C. (1983). Amino acid neurotransmitters and their pathways in the mammalian central nervous system.Neuroscience, 9, 701–771.

    Google Scholar 

  • Foster, A., and Fagg, G. E. (1987). Taking apart NMDA receptors.Nature, 329, 395.

    Google Scholar 

  • Gabbard, G. O., and Twemlow, S. T. (1989). Comments on “A neurobiological model for near-death experiences.”Journal of Near-Death Studies, 7, 261–264.

    Google Scholar 

  • Ghoneim, M. M., Hinrichs, J. V., Mewaldt, S. P., and Peterson, R. C. (1985). Ketamine: Behavioral effects of subanesthetic doses.Journal of Clinical Psychopharmacology, 5, 70–77.

    Google Scholar 

  • Gourie, D. M., Cherian, L., and Shankar, S. K. (1983). Seizures in cats induced by ketamine hydrochloride anaesthesia.Indian Journal of Medical Research, 77, 525–528.

    Google Scholar 

  • Greenamyre, J. T., Young, A. B., and Penney, J. B. (1984). Quantitative autoradiographic distribution of l-[3H]glutamate binding sites in rat central nervous system.Journal of Neuroscience, 4, 2133–2144.

    Google Scholar 

  • Greyson, B. (1983). The psychodynamics of near-death experiences.Journal of Nervous and Mental Disease, 171, 376–380.

    Google Scholar 

  • Greyson, B., and Stevenson, I. (1980). The phenomenology of near-death experiences.American Journal of Psychiatry, 137, 1193–1196.

    Google Scholar 

  • Grinspoon, L., and Bakalar, J. B. (1979).Psychedelic drugs reconsidered. New York, NY: Basic Books.

    Google Scholar 

  • Grof, S., and Halifax, J. (1977).The human encounter with death. New York, NY: Dutton.

    Google Scholar 

  • Headley, P. M., West, D. C., and Roe, C. (1985). Actions of ketamine and the role of N-methyl-aspartate receptors in the spinal cord: Studies on nociceptive and other neuronal responses.Neurological Neurobiology, 14, 325–335.

    Google Scholar 

  • Henderson, Y., and Haggard, H. W. (1927).Noxious gases and the principles of respiration influencing their action. New York, NY: American Chemical Society.

    Google Scholar 

  • Henriksen, S. J., Bloom, F. E., McCoy, F., Ling, N., and Guillemin, R. (1978). β-endorphin induces nonconvulsive limbic seizures.Proceedings of the National Academy of Science, 75, 5221–5225.

    Google Scholar 

  • Holaday, J. W., and Faden, A. L. (1978). Naloxone reversal of endotoxin hypotension suggests role of endorphins in shock.Nature, 275, 450–451.

    Google Scholar 

  • Hoyer, S., and Nitsch, R. (1989). Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type.Journal of Neural Transmission, 75, 226–232.

    Google Scholar 

  • Jansen, K. L. R. (1989a). The near-death experience [Letter].British Journal of Psychiatry, 154, 882–883.

    Google Scholar 

  • Jansen, K. L. R. (1989b). Near-death experience and the NMDA receptor [Letter].British Medical Journal, 298, 1708.

    Google Scholar 

  • Jansen, K. L. R. (1990a). Ketamine: Can chronic use impair memory?International Journal of Addictions, 25, 133–139.

    Google Scholar 

  • Jansen, K. L. R. (1990b). Neuroscience and the near-death experience: Roles for the NMDA-PCP receptor, the sigma receptor and the endopsychosins.Medical Hypotheses, 31, 25–29.

    Google Scholar 

  • Jansen, K. L. R. (1991). Transcendental explanations and the near-death experience [Letter].Lancet, 337, 244.

    Google Scholar 

  • Jansen, K. L. R. (1993). Non-medical uses of ketamine.British Medical Journal, 298, 4708–4709.

    Google Scholar 

  • Jansen, K. L. R., and Faull, R. L. M. (1991). Excitatory amino acids, NMDA and sigma receptors: A role in schizophrenia?Behavioural and Brain Sciences, 14, 34–35.

    Google Scholar 

  • Jansen, K. L. R., Faull, R. L. M., and Dragunow, M. (1989). Excitatory amino acid receptors in the human cerebral cortex: A quantitative autoradiographic study comparing the distribution of [3H]TCP, [3H]glycine, l-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites.Neuroscience, 32, 587–607.

    Google Scholar 

  • Jansen, K. L. R., Faull, R. L. M., Dragunow, M., and Leslie, R. (1991). Autoradiographic distribution of sigma receptors in human neocortex, hippocampus, basal ganglia, cerebellum, pineal and pituitary glands.Brain Research, 559, 172–177.

    Google Scholar 

  • Jansen, K. L. R., Faull, R. L. M., Dragunow, M. and Synek, B. (1990). Alzheimer's disease: Changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors—An autoradiographic study.Neuroscience, 39, 613–617.

    Google Scholar 

  • King, G. L., and Dingledine, R. (1986). Evidence for the activation of the N-methyl-D-aspartate receptor during epileptic discharge. In R. Schwartz and Y. Ben-Ari (Eds.),Excitatory amino acids and epilepsy (pp. 520–570). New York, NY: Plenum.

    Google Scholar 

  • Kisvardy, Z. F., Cowey, A., Smith, A. D., and Somogyi, P. (1989). Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey.Journal of Neuroscience, 9, 667–682.

    Google Scholar 

  • Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B., and Charney, D. S. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans.Archives of General Psychiatry, 51, 199–214.

    Google Scholar 

  • Leary, T. F. (1983).Flashbacks: An autobiography. Los Angeles, CA: Tarcher.

    Google Scholar 

  • Leccese, A. P., Marquis, K. L., Mattia, A., and Moreton, J. E. (1986). The anticonvulsant and behavioural effects of phencyclidine and ketamine following chronic treatment in rats.Behavioral Brain Research, 22, 257–233.

    Google Scholar 

  • Lilly, J. C. (1961). Experiments in solitude, in maximum achievable physical isolation with water suspension, of intact healthy persons. In B. Flaherty (Ed.),Physiological aspects of space flight (pp. 238–247). New York, NY: Columbia University Press.

    Google Scholar 

  • Lilly, J. C. (1978).The scientist: A novel autobiography. New York, NY: Bantam/Lippincott.

    Google Scholar 

  • Lobner, D., and Lipton, P. (1990). σ-ligands and non-competitive NMDA antagonists inhibit glutamate release during cerebral ischemia.Neuroscience Letters, 117, 169–174.

    Google Scholar 

  • Mares, P., Lansitiakova, M., Vankova, S., Kubova, H., and Velisek, L. (1992). Ketamine blocks cortical epileptic afterdischarges but not paired-pulse and frequency potentiation.Neuroscience, 50, 339–344.

    Google Scholar 

  • Mayer, M. L., Westbrook, G. L., and Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA receptors in spinal cord neurons.Nature, 309, 261–263.

    Google Scholar 

  • McCarthy, D. A. (1981). History of the development of cataleptoid anesthetics of the phencyclidine type. In E. F. Domino (Ed.),Phencyclidine: Historical and current perspectives (pp. 80–115). Ann Arbor, MI: NPP Books.

    Google Scholar 

  • McCarthy, D. A., Chen, G., Kaump, D. H., and Ensor, C. J. (1965). General anesthetic and other pharmacological properties of 2-(O-chlorophenyl)-2-methylamino cyclohexanone HCl (CI-581).Journal of New Drugs, 5, 21–33.

    Google Scholar 

  • McGinty, J. F., Kanamatsu, T., Obie, J., and Hong, J. S. (1986). Modulation of opioid peptide metabolism by seizures: Differentiation of opioid subclasses.National Institute of Drug Abuse Research Monographs, 71, 89–101.

    Google Scholar 

  • McNaughton, B. C., and Morris, R. G. M. (1987). Hippocampal synaptic enhancement and information storage within a distributed system.Trends in Neurosciences, 10, 408–415.

    Google Scholar 

  • Meduna, L. J. (1950). The effect of carbon dioxide upon the functions of the brain. In L. J. Meduna (Ed.),Carbon dioxide therapy (pp. 23–40). Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Meldrum, B. S., Evans, M. C., Swan, J. H., and Simon, R. P. (1987). Protection against hypoxic/ischaemic brain damage with excitatory amino acid antagonists.Medical Biology, 65, 153–157.

    Google Scholar 

  • Meltzer, H. Y. (Ed.). (1987).Psychopharmacology; The third generation of progress. New York, NY: Raven Press.

    Google Scholar 

  • Mody, I., and Heinemann, U. (1987). NMDA receptors of dentate gyrus cells participate in synaptic transmission following kindling.Nature, 326, 701–703.

    Google Scholar 

  • Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989). The excitatory amino acid receptors: Their classes, pharmacology and distinct properties in the function of the nervous system.Annual Review of Pharmacology and Toxicology, 29, 365–402.

    Google Scholar 

  • Moody, R. A. (1975).Life after life. Covington, GA: Mockingbird Books.

    Google Scholar 

  • Morris, R. G. M., Anderson, E., Lynch, G. S., and Baudry, M. (1986). Selective impairment of learning and blockade of EPT by NMDA antagonist AP5.Nature, 319, 744–776.

    Google Scholar 

  • Morse, M. L. (1989). Comments on “A neurobiological model for near-death experiences.”Journal of Near-Death Studies, 7, 223–228.

    Google Scholar 

  • Morse, M. L., Conner, D., and Tyler, D. (1985). Near-death experiences in a pediatric population.American Journal of Diseases of Children, 139, 595–563.

    Google Scholar 

  • Musacchio, J. M., Klein, M., and Canoll, P. D. (1990). Dextromethorphan sites, sigma receptors and the psychotomimetic effects of sigma opiates.Progress in Clinical and Biological Research, 328, 13–16.

    Google Scholar 

  • Myslobodsky, M. S., Golovchinsky, V., and Mintz, M. (1981). Ketamine: Convulsant or anticonvulsant?Pharmacology, Biochemistry, and Behavior, 14, 27–33.

    Google Scholar 

  • Nowak, L., Bergestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurons.Nature, 307, 462–465.

    Google Scholar 

  • Noyes, R., and Kletti, R. (1976a). Depersonalization in the face of life threatening danger: A description.Psychiatry, 39, 19–30.

    Google Scholar 

  • Noyes, R., and Kletti, R. (1976b). Depersonalization in the face of life threatening danger: An interpretation.Omega, 7, 103–108.

    Google Scholar 

  • Olney, J. W., Collins, R. C., and Sloviter, R. S. (1986). Excitotoxic mechanisms of epileptic brain damage.Advances in Neurology, 44, 857–877.

    Google Scholar 

  • Osis, K. and Haraldsson, E. (1977).At the hour of death. New York, NY: Avon.

    Google Scholar 

  • Oyama, T.Y., Jin, T., Yamaga, R., Ling, N. and Guillemin, R. (1980). Profound analgesic effects of β-endorphin in man.Lancet, 1, 122–124.

    Google Scholar 

  • Oye, N., Paulsen, O., and Maurset, A. (1992). Effects of ketamine on sensory perception: Evidence for a role of N-methyl-D-aspartate receptors.Journal of Pharmacology and Experimental Therapeutics, 260, 1209–1213.

    Google Scholar 

  • Parsons, C. G., Gibbens, H., Magnago, T. S. I., and Headley, P. M. (1988). At which ‘sigma’ site are the spinal actions of ketamine mediated?Neuroscience Letters, 85, 322–328.

    Google Scholar 

  • Persinger, M. A., and Makarec, K. (1987). Temporal lobe epileptic signs and correlative behaviors displayed by normal populations.Journal of General Psychology, 114, 179–195.

    Google Scholar 

  • Pichlmayr, I., Lips, U., and Kunkel, H. (1984).The electroencephalogram in anaesthesia. Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Peters, S., Koh, J., and Choi, D. W. (1987). Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons.Science, 236, 589–592.

    Google Scholar 

  • Pfieffer, A., Brantl, V., Herz, A., and Emrich, H. M. (1986). Psychotomimesis mediated by opiate receptors.Science, 233, 774–776.

    Google Scholar 

  • Quirion, R., Chicheportiche, R., Contreras, P. C., Johnston, K. M., Lodge, D., Tam, S. W., Woods, J.H., and Zukin, S. R. (1987). Classification and nomenclature of phencyclidine and sigma receptor sites.Trends in Neurosciences, 10, 444–446.

    Google Scholar 

  • Quirion, R., DiMaggio, D. A., French, E. D., Contreras, P. C., Shiloach, J., Pert, C. B., Everist, H., Pert, A., and O'Donohue, T. L. (1984). Evidence for an endogenous peptide ligand for the phencyclidine receptor.Peptides, 5, 967–977.

    Google Scholar 

  • Reich, D. L., and Silvay, G. S. (1989). Ketamine: An update on the first twenty-five years of clinical experience.Canadian Journal of Anaesthesia, 36, 186–197.

    Google Scholar 

  • Ring, K. (1980).Life at death: A scientific investigation of the near-death experience. New York, NY: Coward, McCann, and Geoghegan.

    Google Scholar 

  • Rogo, D. S. (1984). Ketamine and the near-death experience.Anabiosis: The Journal of Near-Death Studies, 4, 87–96.

    Google Scholar 

  • Rothman, S. M. (1984). Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death.Journal of Neuroscience, 4, 1884–1891.

    Google Scholar 

  • Rothman, S. M., and Olney, J. W. (1986). Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Annals of Neurology, 19, 105–111.

    Google Scholar 

  • Rothman, S. M., and Olney, J. W. (1987). Excitotoxicity and the NMDA receptor.Trends in Neurosciences, 107, 299–302.

    Google Scholar 

  • Rothman, S. M., Thurston, J. H., Hauhart, R. E., Clark, G. P., and Solomon, J. S. (1987). Ketamine protects hippocampal neurons from anoxia in vitro.Neuroscience, 21, 673–683.

    Google Scholar 

  • Rumpf, K., Pedick, J., Teuteberg, H., Munchhoff, W. and Nolte, H. (1969). Dream-like experiences during brief anaesthesia with ketamine, thiopental and propiadid. In H. Dreuscher (Ed.),Ketamine (pp. 161–180). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Saavedra-Aguilar, J. C., and Gómez-Jeria, J. S. (1989). A neurobiological model for near-death experiences.Journal of Near-Death Studies, 7, 205–222.

    Google Scholar 

  • Sabom, M. B. (1982).Recollections of death: A medical investigation. New York, NY: Harper and Row.

    Google Scholar 

  • Schoenberg, J., and Sjolund, B. H. (1986). First order nociceptive synapses in rat dorsal horn are blocked by an amino acid antagonist.Brain Research, 379, 394–398.

    Google Scholar 

  • Schwartz, M. S., Virden, S., and Scott, D. F. (1974). Effects of ketamine on the electroencephalograph.Anaesthesia, 29, 135–140.

    Google Scholar 

  • Schwarz, S., Pohl, P., and Zhou, G.-Z. (1989). Steroid binding at σ-“opioid” receptors.Science, 246, 1635–1637.

    Google Scholar 

  • Shulgin, A., and Shulgin, A. (1991).Pihkal: A chemical love story. Berkeley, CA: Transform Press.

    Google Scholar 

  • Siegel, R. K. (1978). Phencyclidine and ketamine intoxication: A study of recreational users. In R. C. Peterson and R. C. Stillman (Eds.),Phencyclidine abuse: An appraisal (National Institute of Drug Abuse Research Monograph Number 21) (pp. 119–140). Rockville, MD: National Institute of Drug Abuse.

    Google Scholar 

  • Siegel, R. K. (1980). The psychology of life after death.American Psychologist, 35, 911–950.

    Google Scholar 

  • Siegel, R. K. (1981, January). Accounting for “afterlife” experiences.Psychology Today, pp. 65–75.

  • Simon, R. P., Swan, S. H., Griffiths, T., and Meldrum, B. S. (1984). Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain.Science, 226, 850–852.

    Google Scholar 

  • Sklar, G. S., Zukin, S. R., and Reilly, T. A. (1981). Adverse reactions to ketamine anaesthesia: Abolition by a psychological technique.Anaesthesia, 36, 183–187.

    Google Scholar 

  • Sloviter, R. S. (1983). “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path.Brain Research Bulletin, 10, 675–697.

    Google Scholar 

  • Sonders, M. S., Keana, J. F., Weber, E. (1988). Phencyclidine and psychotomimetic sigma opiates: Recent insights into their biochemical and physiological sites of action.Trends in Neurosciences, 11, 37–40.

    Google Scholar 

  • Sotelo, J., Perez, R., Guevara, P., and Fernandez, A. (1995). Changes in brain, plasma and cerebrospinal fluid contents of ß-endorphin in dogs at the moment of death.Neurological Research, 17, 223–225.

    Google Scholar 

  • Sputz, R. (1989, October). I never met a reality I didn't like: A report on “Vitamin K.”High Times, pp. 64–82.

  • Squire, L. R., and Zola-Morgan, S. (1988). Memory: Brain systems and behavior.Trends in Neurosciences, 11, 170–175.

    Google Scholar 

  • Stafford, P. (1977).Psychedelics encyclopedia. Berkeley, CA: And/Or Press.

    Google Scholar 

  • Stafford, P. (1992).Psychedelics encyclopedia (third expanded ed.). Berkeley, CA: Ronin Publishing.

    Google Scholar 

  • Stevens, J. (1988).Storming heaven: LSD and the American dream. New York, NY: HarperCollins.

    Google Scholar 

  • Stevenson, I., and Greyson, B. (1979). Near-death experiences: Relevance to the question of survival after death.Journal of the American Medical Association, 242, 265–267.

    Google Scholar 

  • Su, T. P., London, E. D., and Jaffe, J. H. (1988). Steroid binding at σ receptors suggests a link between endocrine, nervous and immune systems.Science, 240, 219–223.

    Google Scholar 

  • Taberner, P. V. (1976). The anticonvulsant activity of ketamine against seizures induced by pentylenetetrazol and mercaptopropionic acid.European Journal of Pharmacology, 39, 305–311.

    Google Scholar 

  • Thomson, A. M. (1986). A magnesium-sensitive post-synaptic potential in rat cerebral cortex resembles neuronal responses to N-methylaspartate.Journal of Physiology, 370, 531–549.

    Google Scholar 

  • Thomson, A. M., West, D. C., and Lodge, D. (1985). An N-methylaspartate receptor-mediated synapse in rat cerebral cortex: A site of action of ketamine?Nature, 313, 479–481.

    Google Scholar 

  • Vaupel, D. B. (1983). Naltrexone fails to antagonize the effects of PCP and SKF 10,047 in the dog.European Journal of Pharmacology, 92, 269–274.

    Google Scholar 

  • Vollenweider, F. X. (1996). Relationship of altered states of consciousness and principal components of brain energy metabolism by FDG-PET. In M. Schlichting (Ed.),Welten des Bewusstseins/Worlds of Consciousness: Abstracts of the 2nd International Congress of the European College for the Study of Consciousness, Band 6 Vol. (pp. 29–30). Berlin, Germany: Verlag für Wissenschaft und Bildung.

    Google Scholar 

  • Walker, J. M., Bowen, W. D., Walker, F. O., Matsumoto, R. R., De Costa, B., and Rice, K. C. (1990). Sigma receptors: Biology and function.Pharmacological Reviews, 42, 355–402.

    Google Scholar 

  • Westbrook, G. L., and Mayer, M. L. (1987). Micromolecular concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons.Nature, 328, 640–643.

    Google Scholar 

  • Westerberg, E., Monaghan, D. T., Cotman, C. W., and Wieloch, T. (1987). Excitatory amino acid receptors and ischemic brain damage in the rat.Neuroscience Letters, 73, 119–124.

    Google Scholar 

  • White, P. F., Ham, J., Way, W. L., and Trevor, A. J. (1980). Pharmacology of ketamine isomers in surgical patients.Anesthesiology, 52, 231–239.

    Google Scholar 

  • White, P. F., Schuttler, J., Schafer, A., Stanski, D. R., Horai, Y., and Trevor, A. J. (1985). Comparative pharmacology of ketamine isomers.British Journal of Anaesthesia, 57, 197–203.

    Google Scholar 

  • White, P. F., Way, W. L., and Trevor, A. J. (1982). Ketamine—Its pharmacology and therapeutic uses.Anesthesiology, 56, 119–136.

    Google Scholar 

  • White, W. F., Nadler, J. V., Hamburger, A., Cotman, C. W., and Cummins, J. T. (1977). Glutamate as a transmitter of hippocampal perforant path.Nature, 270, 356–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, K.L.R. The Ketamine Model of the Near-Death Experience: A Central Role for the N-Methyl-D-Aspartate Receptor. Journal of Near-Death Studies 16, 5–26 (1997). https://doi.org/10.1023/A:1025055109480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025055109480

Keywords

Navigation