Skip to main content
Log in

Functional Regulation of Choline Acetyltransferase by Phosphorylation

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Choline acetyltransferase (ChAT) catalyzes synthesis of acetylcholine (ACh) in cholinergic neurons. ACh synthesis is regulated by availability of precursors choline and acetyl coenzyme A or by activity of ChAT; ChAT regulates ACh synthesis under some conditions. Posttranslational phosphorylation is a common mechanism for regulating the function of proteins. Analysis of the primary sequence of 69-kD human ChAT indicates that it has putative phosphorylation consensus sequences for multiple protein kinases. ChAT is phosphorylated on serine-440 and threonine-456 by protein kinase C and CaM kinase II, respectively. These phosphorylation events regulate activity of the enzyme, as well as its binding to plasma membrane and interaction with other cellular proteins. It is relevant to investigate differences in constitutive and inducible patterns of phosphorylation of ChAT under physiological conditions and in response to challenges that cholinergic neurons may be exposed to, and to determine how changes in phosphorylation relate to changes in neurochemical transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Misawa, H., Ishi, K., and Deguchi, T. 1992. Gene expression of mouse choline acetyltransferase: Alternative splicing and identification of a highly active promoter region. J. Biol. Chem. 267:20392–20399.

    PubMed  Google Scholar 

  2. Oda, Y., Nakanishi, I., and Deguchi, T. 1992. A complementary DNA for human choline acetyltransferase induces two forms of enzyme with different molecular weights in cultured cells. Mol. Brain Res. 16:287–294.

    PubMed  Google Scholar 

  3. Robert, I. and Quirin-Stricker, C. 2001. A novel untranslated 'exon H' of the human choline acetyltransferase gene in placenta. J. Neurochem. 79:9–16.

    PubMed  Google Scholar 

  4. Misawa, H., Matsuura, J., Oda, Y., Takahashi, R., and Deguchi, T. 1997. Human choline acetyltransferase mRNAs with different 5′-region produce a 69-kD major translation product. Mol. Brain Res. 44:323–333.

    PubMed  Google Scholar 

  5. Ohno, K., Tsujino, A., Brengman, J. M., Harper, C. M., Bajzer, Z., Udd, B., Beyring, R., Robb, S., Kirkham, F. J., and Engel, A. G. 2001. Choline acetyltransferase mutations cause myasthenic syndrome associated with apnea in humans. Proc. Nat. Acad. Sci. 98:2017–2022.

    PubMed  Google Scholar 

  6. Resendes, M. C., Dobransky, T., Ferguson, S. S., and Rylett, R. J. 1999. Nuclear localization of the 82-kD form of human choline acetyltransferase. J. Biol. Chem. 274:19417–19421.

    PubMed  Google Scholar 

  7. Dobransky, T., Davis, W. L., Xiao, G. H., and Rylett, R. J. 2000. Expression, purification and characterization of recombinant human choline acetyltransferase: Phosphorylation of the enzyme regulates catalytic activity. Biochem. J. 349:141–151.

    PubMed  Google Scholar 

  8. Tuček, S. 1990. The synthesis of acetylcholine: Twenty years of progress. Prog. Brain Res. 84:467–477.

    PubMed  Google Scholar 

  9. Hersh, L. B. 1982. Kinetic studies of the choline acetyltransferase reaction using isotope exchange at equilibrium. J. Biol. Chem. 257:12820–12834.

    PubMed  Google Scholar 

  10. Tuček, S. 1985. Regulation of acetylcholine synthesis in the brain. J. Neurochem. 44:10–24.

    Google Scholar 

  11. Uney, J. B. and Marchbanks, R. M. 1987. Specificity of ethyl-choline mustard aziridinium as an irreversible inhibitor of choline transport in cholinergic and noncholinergic tissue. J. Neurochem. 48:1673–1676.

    PubMed  Google Scholar 

  12. Pongrac, J. L. and Rylett, R. J. 1996. Differential effects of nerve growth factor on expression of choline acetyltransferase and sodium-coupled choline transport in basal forebrain cholinergic neurons in culture. J. Neurochem. 66:804–810.

    PubMed  Google Scholar 

  13. Cooke, L. J. and Rylett, R. J. 1997. Inhibitors of serine/threonine phosphatases increase membrane-bound choline acetyltransferase activity and enhance acetylcholine synthesis. Brain Res. 751:232–238.

    PubMed  Google Scholar 

  14. Rylett, R. J. and Schmidt, B. M. 1993. Regulation of the synthesis of acetylcholine. Prog. Brain Res. 98:161–166.

    PubMed  Google Scholar 

  15. Collier, B., Tandon, A., Prado, M. A. M., and Bachoo, M. 1993. Storage and release of acetylcholine in a sympathetic ganglion. Prog. Brain Res. 98:183–189.

    PubMed  Google Scholar 

  16. Tandon, A., Bachoo, M., Weldon, P., Polosa, C., and Collier, B. 1996. Effects of colchicine application to preganglionic axons on choline acetyltransferase activity and acetylcholine content and release in the superior cervical ganglion. J. Neurochem. 66:1033–1041.

    PubMed  Google Scholar 

  17. Browning, M. D., Huganir, R., and Greengard, P. 1985. Protein phosphorylation and neuronal function. J. Neurochem. 45:11–22.

    PubMed  Google Scholar 

  18. Schenk, P. W. and Snaar-Jagalska, B. E. 1999. Signal perception and transduction: The role of protein kinases. Biochim. Biophys. Acta 1449:1–24.

    PubMed  Google Scholar 

  19. Graves, J. D. and Krebs, E. G. 1999. Protein phosphorylation and signal transduction. Pharmacol. Ther. 82:111–121.

    PubMed  Google Scholar 

  20. Yaffe, M. B. and Cantley, L. C. 1999. Signal transduction: Grabbing phosphoproteins. Nature 402:30–31.

    PubMed  Google Scholar 

  21. Kumer, S. C. and Vrana, K. E. 1996. Intricate regulation of tyrosine hydroxylase activity and gene expression. J. Neurochem. 67:443–462.

    PubMed  Google Scholar 

  22. Schmidt, B. M. and Rylett, R. J. 1993. Phosphorylation of rat brain choline acetyltransferase and its relationship to enzyme activity. J. Neurochem. 61:1774–1781.

    PubMed  Google Scholar 

  23. Bruce, G. and Hersh, L. B. 1989. The phosphorylation of choline acetyltransferase. Neurochem. Res. 14:613–620.

    PubMed  Google Scholar 

  24. Habert, E., Birman, S., and Mallet, J. 1992. High-level synthesis and fate of acetylcholine in baculovirus-infected cells: Characterization and purification of recombinant rat choline acetyltransferase. J. Neurochem. 58:1447–1453.

    PubMed  Google Scholar 

  25. Dobransky, T., Davis, W. L., and Rylett, R. J. 2001. Functional characterization of phosphorylation of 69-kD human choline acetyltransferase at serine-440 by protein kinase C. J. Biol. Chem. 276:22244–22250.

    PubMed  Google Scholar 

  26. Dobransky, T., Brewer, D., Lajoie, G., and Rylett, R. J. 2003. Phosphorylation of 69-kD choline acetyltransferase at threonine-456 in response to short-term exposure to amyloid-β peptide 1–42. J. Biol. Chem. in press.

  27. Yamauchi, T., Nakata, H., and Fujisawa, H. 1981. A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase: Purification and characterization. J. Biol. Chem. 256:5404–5409.

    PubMed  Google Scholar 

  28. Ichimura, T., Isobe, T., Okuyama, T., Takahashi, N., Araki, K., Kuwano, R., and Takahashi, Y. 1988. Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc. Nat. Acad. Sci. 85:7084–7088.

    PubMed  Google Scholar 

  29. Cozzari, C. and Hartman, B. K. 1983. Choline acetyltransferase: Purification procedure and factors affecting chromatographic properties and enzyme stability. J. Biol. Chem. 258:10013–10019.

    PubMed  Google Scholar 

  30. Cozzari, C. and Hartman, B. K. 1983. An endogenous inhibitory factor for choline acetyltransferase. Brain Res. 276:109–117.

    PubMed  Google Scholar 

  31. Andriamampandry, C. and Kanfer, J. N. 1993. Inhibition of cytosolic human forebrain choline acetyltransferase activity by phospho-L-serine: A phosphomonoester that accumulates during early stages of Alzheimer's disease. Neurobiol. Aging 14:367–372.

    PubMed  Google Scholar 

  32. Singh, I., Xu, C., Pettegrew, J. W., and Kanfer, J. N. 1994. Endogenous inhibitors of human choline acetyltransferase present in Alzheimer's brain: Preliminary observation. Neurobiol. Aging 15:643–649.

    PubMed  Google Scholar 

  33. Pahud, G., Salem, N., van de Goor, J., Medilanski, J., Pellegrinelli, N., and Eder-Colli, L. 1998. Study of subcellular localization of membrane-bound choline acetyltransferase in Drosophila central nervous system and its association with membranes. Eur. J. Neurosci. 10:1644–1653.

    PubMed  Google Scholar 

  34. Carroll, P. T., Badamchian, M., Craig, P., and Lyness, W. H. 1986. Veratridine-induced breakdown of cytosolic acetylcholine in rat hippocampal minces: An intraterminal form of acetylcholinesterase or choline O-acetyltransferase? Brain Res. 383:83–99.

    PubMed  Google Scholar 

  35. Carroll, P. T. 1987. Veratridine-induced activation of choline-O-acetyltransferase activity in rat hippocampal tissue: Relationship to the veratridine-induced release of acetylcholine. Brain Res. 414:401–404.

    PubMed  Google Scholar 

  36. Pisano, M. R., Wang, H. Y., and Friedmann, E. 1991. Protein kinase activity changes in the aging brain. Biomed. Environ. Sci. 4:173–171.

    Google Scholar 

  37. Clark, E. A., Leach, K. L., Trojanowski, J. Q., and Lee, M. Y. 1991. Characterization and differential distribution of the three major human protein kinase C isozymes (PKC alpha, PKC beta, and PKC gamma) of the central nervous system in normal and Alzheimer's disease brains. Lab. Invest. 64:35–44.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobransky, T., Jane Rylett, R. Functional Regulation of Choline Acetyltransferase by Phosphorylation. Neurochem Res 28, 537–542 (2003). https://doi.org/10.1023/A:1022873323561

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022873323561

Navigation