Skip to main content
Log in

Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier–Stokes Equations (k Turbulence Model)

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The neutrally stratified flow over the Askervein Hill was simulatedusing a terrain-following coordinatesystem and a two-equation(k - ∈) turbulence model. Calculations were performed on awide range of numerical grids to assess, among other things, theimportance of spatial discretization and the limitations of theturbulence model. Our results showed that a relatively coarse gridwas enough to resolve the flow in the upstream region of the hill;at the hilltop, 10 m above the ground, the speed-up was 10% lessthan the experimental value. The flow's most prominent feature wasa recirculating region in the lee of the hill, which determinedthe main characteristics of the whole downstream flow. This regionhad an intermittent nature and could be fully captured only in the caseof a time-dependent formulation and a third-order discretization ofthe advective terms. The reduction of the characteristic roughnessnear the top of the hill was also taken into account, showing theimportance of this parameter, particularly in the flow close to theground at the summit and in the downstream side of the hill.Calculations involving an enlarged area around the Askervein Hillshowed that the presence of the nearby topography affected the flowneither at the top nor downstream of the Askervein Hill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beljaars, A. C. M., Walmsley, J. L., and Taylor, P. A.: 1987, 'A Mixed Spectral Finite-Difference Model for Neutrally Stratified Boundary-Layer Flow over Roughness Changes and Topography', Boundary-Layer Meteorol. 38, 273-303.

    Google Scholar 

  • Castro, F. A.: 1997, Numerical Methods for the Simulation of Atmospheric Flows over Complex Terrain, Ph.D. Thesis, University of Porto, Portugal, 267 pp. (in Portuguese).

    Google Scholar 

  • Castro, F. A. and Palma, J. M. L. M.: 2002, 'VENTOSTM: A Computer Code for Simulation of Atmospheric Flows over Complex Terrain', Technical Report, Available from the authors, 21 pp.

  • Durbin, P. A. and Reif, B. A. P.: 2001, Statistical Theory and Modeling for Turbulent Flows, John Wiley & Sons, Chichester, New York, 285 pp.

  • Gresho, P. and Lee, R.: 1981, 'Don't Suppress the Wiggles-They're Telling you Something!', Comput. Fluids 9, 223-253.

    Google Scholar 

  • Jackson, P. S. and Runt, J. C. R.: 1975, 'Turbulent Wind over a Low Hill', Quart. J. Roy. Meteorol. Soc. 101, 929-955.

    Google Scholar 

  • Kenjereš, S. and Hanjalić, K.: 2002, 'Combined Effects of Terrain Topography and Thermal Stratification on Pollutant Dispersion in a Town Valley: A T-RANS Simulation', J. Turbul. 3(26), (http:/jot.iop.org).

  • Kim, H. and Patel, V.: 2000, 'Test of Turbulence Models forWind Flow over Terrain with Separation and Recirculation', Boundary-Layer Meteorol. 94, 5-21.

    Google Scholar 

  • Knupp, P. and Steinberg, S.: 1994, Fundamentals of Grid Generation, CRC Press, Boca Raton, 286 pp.

    Google Scholar 

  • Launder, B. E. and Sharma, B. I.: 1974, 'Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow near a Spinning Disc', Lett. Heat Mass Trans. 1, 131-138.

    Google Scholar 

  • Launder, B. F. and Spalding, D. B.: 1972, Mathematical Model of Turbulence, Academic Press, London, 169 pp.

    Google Scholar 

  • Leonard, B. P.: 1979, 'A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation', Comput. Meth. Appl. Mech. Eng. 19, 59-98.

    Google Scholar 

  • Mason, P. J. and King, J. C.: 1985, 'Measurements and Predictions of Flow and Turbulence over Isolated Hill of Moderate Slop', Quart. J. Roy. Meteorol. Soc. 111, 617-640.

    Google Scholar 

  • Maurizi, A., Palma J. M. L. M., and Castro, F. A.: 1998, 'Numerical Simulation of the Atmospheric Flow in a Mountainous Region of the North of Portugal', J. Wind Eng. Ind. Aerodyn. 74-76, 219-228.

    Google Scholar 

  • Mickle, R. F., Cook, N. J., Hoff, A. M., Jensen, N. O., Salmon, J. R., Taylor, P. A., Tetzlaff, G., and Teunissen, H. W.: 1988, 'The Askervein Hill Project: Vertical Profiles of Wind and Turbulence', Boundary-Layer Meteorol. 43, 143-169.

    Google Scholar 

  • Miller, T. F. and Schmidt, F. W.: 1988, 'Use of a Pressure-Weighted Interpolation Method for the Solution of the Incompressible Navier-Stokes Equations on a Nonstaggered Grid System', Numer. Heat Transfer 14, 212-233.

    Google Scholar 

  • Nakayama, A. and Miyashita, K.: 2001, 'URANS Simulation of Flow over Smooth Topography', Int. J. Numer. Meth. H. 11, 723-743.

    Google Scholar 

  • Patankar, S. V.: 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington, DC, 197 pp.

    Google Scholar 

  • Raithby, G. D., Stubley, G. D., and Taylor, P. A.: 1987, 'The Askervein Hill Project: A Finite Control Volume Prediction on Three-Dimensional Flows over the Hill', Boundary-Layer Meteorol. 39, 107-132.

    Google Scholar 

  • Rhie, C. M. and Chow, W. L.: 1983, 'Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation', AIAA J. 21, 1525-1532.

    Google Scholar 

  • Schlichting, H. and Gersten, K.: 2000, Boundary Layer Theory, Springer, Berlin, 8th revised and enlarged edition, 799 pp.

    Google Scholar 

  • Silva Lopes, A.: 2000, Flow Simulation in Complex Geometries by Large Eddy Simulation, Ph.D. Thesis, University of Porto, Portugal, 169 pp. (in Portuguese).

    Google Scholar 

  • Taylor, P. A.: 1977, 'Some Numerical Studies of Surface Boundary-Layer Flow over Gentle Topography', Boundary-Layer Meteorol. 11, 439-465.

    Google Scholar 

  • Taylor, P. A. and Teunissen, H. W.: 1983, ASKERVEIN' 82: Report on the September/October 1982 Experiment to Study Boundary Layer Flow over Askervein, South Uist, Report: MSRS-83-8, Technical Report, Meteorological Services Research Branch Atmospheric Environment Service 4905 Dufferin Street, Downsview, Ontario, Canada M3H 5T4.

    Google Scholar 

  • Taylor, P. A. and Teunissen, H. W.: 1985, The Askervein Hill Project: Report on the Sept./Oct. 1983, Main Field Experiment, Research Report MSRB-84-6, Technical Report, Meteorological Services Research Branch Atmospheric Environment Service 4905 Dufferin Street, Downsview, Ontario, Canada M3H 5T4.

    Google Scholar 

  • Teunissen, H.W., Shokr, M. E., Bowen, A. J., Wood, C. J., and Green, D.W. R.: 1987, 'The Askervein Hill Project: Wind Tunnel Simulations at Three Length Scales', Boundary-Layer Meteorol. 40, 1-29.

    Google Scholar 

  • Walmsley, J. L. and Taylor, P. A.: 1996, 'Boundary-Layer Flow over Topography: Impacts of the Askervein Study', Boundary-Layer Meteorol. 78, 291-320.

    Google Scholar 

  • Wood, N.: 1995, 'The Onset of Separation in Neutral, Turbulent Flow over Hills', Boundary-Layer Meteorol. 76, 137-164.

    Google Scholar 

  • Xu, D., Ayotte, K. W., and Taylor, P. A.: 1994, 'Development of a Non-Linear Mixed Spectral Finite Difference Model for Turbulent Boundary-Iayer Flow over Topography', Boundary Layer-Meteorol. 70, 341-367.

    Google Scholar 

  • Zeman, O. and Jensen, N. O.: 1987, 'Modification of Turbulence Characteristics in Flow over Hills', Quart. J. Roy. Meteorol. Soc. 113, 55-80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, F.A., Palma, J.M.L.M. & Silva Lopes, A. Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier–Stokes Equations (k Turbulence Model). Boundary-Layer Meteorology 107, 501–530 (2003). https://doi.org/10.1023/A:1022818327584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022818327584

Navigation