Skip to main content
Log in

A model for austenitisation of hypoeutectoid steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the field of phase transformations in steels, much attention has been paid to the transformation of austenite into diverse product phases but, until recently not much work has been done on the formation of austenite during heating. There are few published models dealing with the transformation of eutectoid or hypoeutectoid steels with a starting microstructure which is a mixture of ferrite and pearlite.

The aim of the present work was to use phase transformation theory to develop a model for austenite formation which takes into account the chemical composition and microstructure of the steel studied, and thermal history experienced. Classic nucleation theory and diffusion-controlled growth equations are used to determine the progressive transformation of the different phases into austenite.

A phase transformation model with sound physical basis as the one presented in this work can be used to determine the effects of various parameters in the reaction involved, like microstructure (grain size, pearlite spacing), composition, heating rate and others. Another direct application of this model is the generation of CHT (continuous heating transformation) diagrams for specific steels, which are a useful reference in research, as well as in many industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Mancini and C. Budde, Acta Materialia 47 (1999) 2907.

    Google Scholar 

  2. R. C. Reed, T. Akbay, Z. Shen, J. M. Robinson and J. H. Root, Materials Science and Engineering A 256 (1998) 152.

    Google Scholar 

  3. R. C. Reed, Z. Shen, T. Akbay and J. M. Robinson, ibid. A232 (1997) 140.

    Google Scholar 

  4. G. A. Roberts and R. F. Mehl, Transactions of the A.S.M. 31 (1943) 613.

    Google Scholar 

  5. T. Akbay and C. Atkinson, J. Mater. Sci. 31 (1996) 2221.

    Google Scholar 

  6. Idem., ibid. 31 (1996) 5004.

  7. T. Akbay, R. C. Reed and C. Atkinson, Acta Metallurgica et Materialia 47 (1994) 1469.

    Google Scholar 

  8. A. Ali and H. K. D. H. Bhadeshia, J. Mater. Sci. 28 (1993) 3137.

    Google Scholar 

  9. C. Atkinson and T. Akbay, Acta Materialia 44 (1996) 2861.

    Google Scholar 

  10. C. Atkinson, T. Akbay and R. C. Reed, Acta Metallurgica Materialia 43 (1995) 2013.

    Google Scholar 

  11. N. C. Law and D. V. Edmonds, Metallurgical Transactions A 11A (1980) 33.

    Google Scholar 

  12. G. R. Speich, A. Szirmae and M. J. Richards, Transactions of the Metallurgical Society of A.I.M.E. 245 (1969) 1063.

    Google Scholar 

  13. J. R. Yang and H. K. D. H. Bhadeshia, Materials Science and Engineering A 131 (1991) 99.

    Google Scholar 

  14. J. R. Yang and C. Y. Huang, Materials Chemistry and Physics 35 (1993) 168.

    Google Scholar 

  15. C. R. Brooks, “Principles of the Austenitization of Steels” (Elsevier Applied Science, London, 1992).

    Google Scholar 

  16. A. Jacot, M. Rappaz and R. C. Reed, Acta Materialia 46 (1998) 3949.

    Google Scholar 

  17. A. Jacot and M. Rappaz, ibid. 45 (1997) 575.

    Google Scholar 

  18. Idem., ibid. 47 (1999) 1645.

    Google Scholar 

  19. F. G. Caballero, C. Capdevila and C. GarcÍa de AndrÉs, Scripta Materialia 42 (2000) 1159.

    Google Scholar 

  20. C. GarcÍa de AndrÉs, F. G. Caballero, C. Capdevila and H. K. D. H. Bhadeshia, ibid. 39 (1998) 791.

    Google Scholar 

  21. M. Hillert, in “Decomposition of Austenite by Diffusional Processes,” edited byV. F. Zackay and H. I. Aaronson, (Interscience, New York, 1962) p. 197.

    Google Scholar 

  22. C. M. Sellars, Quantitative Metallography, Technical Report, Escuela Superior de Ingenieros Industriales de San Sebastian, 1981.

  23. L. C. Chang and H. K. D. H. Bhadeshia, Materials Science and technology 11 (1995) 874.

    Google Scholar 

  24. J. W. Christian, “Theory of Transformations in Metals and Alloys, Part I” (Pergamon Press, Oxford, 1975).

    Google Scholar 

  25. S. J. Jones and H. K. D. H. Bhadeshia, Metallurgical and Materials Transactions A 28A (1997) 2005.

    Google Scholar 

  26. C. Zener, Transactions of the A.I.M.E. 203 (1955) 619.

    Google Scholar 

  27. L. Kaufman, E. V. Clougherty and R. J. Weiss, Acta Metallurgica 11 (1963) 323.

    Google Scholar 

  28. H. I. Aaronson, H. A. Domian and G. M. Pound, Transactions of the A.I.M.E. 236 (1966) 768.

    Google Scholar 

  29. Idem., ibid. 236 (1966) 753.

  30. S. M. Hodson, “MTDATA-Metallurgical and Thermochemical Databank” (National Physical Laboratory, Teddington, UK, 1989).

    Google Scholar 

  31. A. Prat, X. Tort-Martorell and P. Grima, “Estadística teórica y Aplicada: Entregas 1 a 4” (C.P.D.A., Universitat Politècnica de Catalunya, Barcelona, 1992).

    Google Scholar 

  32. T. Sourmail, Neuromat Ltd., Models manager, 2000.

  33. D. J. C. Mackay, in “Mathematical Modelling of Weld Phenomena 3,” edited by H. Cerjak (The Institute of Materials, London, 1997) p. 359.

    Google Scholar 

  34. D. J. C. Mackay, “vised neural networks.” available at http://wol.ra.phy.cam.ac.uk/mackay/.

  35. J. Crank, “The Mathematics of Diffusion” (Oxford University Press, Oxford, 1975).

    Google Scholar 

  36. M. Avrami, Journal of Chemical Physics 7 (1939) 1103.

    Google Scholar 

  37. Idem., ibid. 8 (1940) 212.

  38. Idem., ibid. 9 (1941) 177.

  39. J. W. Cahn, Acta Metallurgica 4 (1956) 449.

    Google Scholar 

  40. M. T. Hagan, H. B. Demuth and M. Beale, “Neural Network Design” (PWS Publishing, Boston, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaude-Fugarolas, D., Bhadeshia, H.K.D.H. A model for austenitisation of hypoeutectoid steels. Journal of Materials Science 38, 1195–1201 (2003). https://doi.org/10.1023/A:1022805719924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022805719924

Keywords

Navigation