Skip to main content
Log in

State of Radiorhodium in High-Level Liquid Waste from Regeneration of Spent Nuclear Fuel

  • Published:
Radiochemistry Aims and scope

Abstract

The state of radiorhodium in liquid waste from processing of spent nuclear fuel was analyzed in detail by ESR and NMR spectroscopy on several nuclei. The most probable oxidation state of rhodium in nitric acid solutions is +3. Three procedures for preparing nitric acid solutions of rhodium were studied. The composition of Rh(III) complexes in these solutions is similar but not identical. The method for identifying the ionic composition of similar objects was proposed. The speciation of rhodium in nitric acid solutions with the acid concentration ranging from 2×10- 2 to 15 M was studied. Polynuclear oligomers with (μ-ONO2)2 bridges, mainly tetramers, are formed in solutions with CRh > 2 M, [NO3 -] ≥ 8 M, and [H+] ≥ 0.7 M. At CRh = (1-2)×10- 2, [NO3 -] = 1-4 M, and [H+] = 0.4-4 M, the (μ-OH, μ-ONO2) dimer and trimer prevail; at [NO3 -] < 1 M and [H+] < 0.2 M, the (μ-OH, μ-ONO2) dimer dominates. No Rh(III) aqua ion and no monomeric nitrate complexes were detected in the quasiequilibrium system at any concentrations of the components. In nitrate-nitrite solutions, both “subnitrated” (μ-OH, μ-ONO2) Rh(III) oligomers and mononuclear Rh(III) nitroaqua complexes exist. The equilibrium between these species is attained very slowly and depends on the equilibrium concentration of nitrite anion. Forecast was given on isolation of rhodium from nitric acid solutions of SNF by extraction, ion-exchange, electrolytic, and precipitation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lunichkina, K.P. and Renard, E.V., Radiokhimiya, 1974, vol. 16, no. 2, pp. 268-270.

    Google Scholar 

  2. Arseenkov, L.V., Zakharkin, B.S., Lunichkina, K.P., et al., The Third Int. Conf. on Nuclear Fuel Reprocessing and Waste Management (RECOD'91): Proc., Sendai (Japan), April 1991, vol. 2, p. 650.

    Google Scholar 

  3. Gorski, B., Isotopenpräxis, 1988, vol. 24, no. 5, pp. 200-206.

    Google Scholar 

  4. Beer, M. and Gorski, B., GDR Patent 240 849, January 4, 1984.

  5. Klaus, K.K., Izbrannye trudy po khimii platinovykh metallov (Selected Works on Chemistry of Platinum Metals), Moscow: Akad. Nauk SSSR, 1954, pp. 208-212.

    Google Scholar 

  6. Leidie, E. and Quennessen, L., Bull. Soc. Chim. Fr., 1902, vol. 1, no. 3, pp. 179-183.

    Google Scholar 

  7. Wöhler, L. and Ewald, K.F.A., in Festschrift zum funfzigjahrigen Bestehen der Platinschmelze, Hanau: G. Siebert, 1931, p. 321.

    Google Scholar 

  8. Dwyer, F.P., Nyholm, R.S., and Rogers, L.E., J. Proc. Roy. Soc. N. S. Wales, 1947, vol. 81, pp. 267-272.

    Google Scholar 

  9. Holloway, J.H., Rao, P.R., and Bartlett, N., Chem. Commun., 1965, pp. 306-307.

  10. Griffith, W.P., The Chemistry of Rare Platinum Metals (Os, Ru, Ir, and Rh), London: Wiley, 1967.

    Google Scholar 

  11. Grube, G. and Kesting, E., Z. Elektrochem., 1933, vol. 39, no. 12, pp. 948-958.

    Google Scholar 

  12. Grube, G. and Gu, B., Z. Elektrochem., 1937, vol. 43, no. 7, pp. 397-403.

    Google Scholar 

  13. Grube, G. and Mayer, K.H., Z. Elektrochem., 1937, vol. 43, no. 7, pp. 404-406.

    Google Scholar 

  14. Grube, G. and Autenrieth, H., Z. Elektrochem., 1937, vol. 43, no. 11, pp. 880-886.

    Google Scholar 

  15. Berecki-Biedermann, C., Arkiv Kemi, 1962, vol. 19, no. 1, pp. 35-49.

    Google Scholar 

  16. Kiselev, Yu.M., Dolzhenko, V.D., and Komozin, P.N., Dokl. Ross. Akad. Nauk, 2000, vol. 370, no. 3, pp. 341-344.

    Google Scholar 

  17. Belyaev, A.V., Doctoral (Chem.) Dissertation, Novosibirsk: Inst. of Inorganic Chemistry, Siberian Division, USSR Acad. Sci., 1985.

    Google Scholar 

  18. Jorgensen, C.K., Adv. Chem. Phys., 1963, vol. 5, p. 33-146.

    Google Scholar 

  19. Belyaev, A.V., Fedotov, M.A., Venediktov, A.B., and Khranenko, S.P., Platinovye metally: khimiya i tekhnologiya (Platinum Metals: Chemistry and Technology), Torgov, V.G. and Kuznetsov, F.A., Eds., Novosibirsk: Inst. Neorg. Khim., Sib. Otdel. Akad. Nauk SSSR, 1989, pp. 5-54.

    Google Scholar 

  20. Fedotov, M.A., and Belyaev, A.V., Koord. Khim., 1984, vol. 10, no. 9, pp. 1236-1242.

    Google Scholar 

  21. Fedotov, M.A. Fedotova, T.N., and Golovaneva, I.F., Zh. Neorg. Khim., 1997, vol. 42, no. 6, pp. 1003-1008.

    Google Scholar 

  22. Shukla, S.K., Ann. Chim., 1961, vol. 6, nos. 11-12, pp. 1383-1443.

    Google Scholar 

  23. Brienza, W.C., US Patent 4 983 372, Isobret. Stran Mira, 1992, no. 37, bull. no. 5, p. 11.

  24. Caminiti, R., Atzei, D., Cucca, P., et al., J. Phys. Chem., 1986, vol. 90, no. 2, pp. 238-243.

    Google Scholar 

  25. Shubochkin, L.K., Nefedov, V.I., Shubochkina, E.F., et al., Zh. Neorg. Khim., 1972, vol. 17, no. 10, pp. 2852-2853.

    Google Scholar 

  26. Shubochkin, L.K., Golubnichaya, M.A., and Shubochkina, E.F., Zh. Neorg. Khim., 1973, vol. 18, no. 12, pp. 3260-3263.

    Google Scholar 

  27. Fedotov, M.A. and Belyaev, A.V., Koord. Khim., 1994, vol. 20, no. 8, pp. 613-615.

    Google Scholar 

  28. Sillen, L.G. and Martell, A.E., Stability Constants of Metal-Ion Complexes, Spec. Publ. no. 17, London: Chem. Soc., 1964.

    Google Scholar 

  29. Elding, L.J. and Oskarsson, A., Inorg. Chim. Acta, 1985, vol. 103, no. 1, pp. 127-131.

    Google Scholar 

  30. Elding, L.J. and Noren, B., Inorg. Chim. Acta, 1986, vol. 114, no. 1, pp. 71-74.

    Google Scholar 

  31. Försterling, H.-U., ZfI-Mitteilungen (Leipzig), 1983, no. 82, pp. 5-85.

  32. Monacelli, F. and Viticoli, S., Inorg. Chim. Acta, 1973, vol. 7, no. 2, pp. 231-235.

    Google Scholar 

  33. Laligant, Y., Ferey, G., and Le Bail, A., Mater. Res. Bull., 1991, vol. 26, no. 4, pp. 269-275.

    Google Scholar 

  34. Fedotov, M.A., Shipachev, V.A., and Levchenko, L.M., Kood. Khim., 1999, vol. 25, no. 1, pp. 35-39.

    Google Scholar 

  35. Read, M.C., Glaser, J., Sandström, M., and Toth, I., Inorg. Chem., 1992, vol. 31, no. 20, pp. 4155-4159.

    Google Scholar 

  36. Read, M.C., Glaser, J., and Sandström, M., J. Chem. Soc., Dalton Trans., 1992, no. 2, pp. 233-240.

  37. Cervini, R., Fallon, G.D., and Spiccia, L., Inorg. Chem., 1991, vol. 30, no. 4, pp. 831-836.

    Google Scholar 

  38. Wolsey, W.C., Reynolds, C.A., and Kleinberg, J., Inorg. Chem., 1963, vol. 2, no. 3, pp. 463-468.

    Google Scholar 

  39. Forrester, J.S. and Ayres, G.H., J. Phys. Chem., 1959, vol. 63, no. 11, pp. 1979-1980.

    Google Scholar 

  40. Belyaev, A.V., Fedotov, M.A., Khranenko, S.P., and Emel'yanov, V.A., Koord. Khim., 2001, vol. 27, no. 12, pp. 907-916.

    Google Scholar 

  41. Plumb, W. and Harris, G.M., Inorg. Chem., 1964, vol. 3, no. 4, pp. 542-545.

    Google Scholar 

  42. Monacelli, F. and Viel, E., Inorg. Chim. Acta, 1967, vol. 1, no. 3, pp. 467-470.

    Google Scholar 

  43. Hancock, M., Nielsen, B., and Springborg, J., Acta Chem. Scand., 1982, vol. A36, no. 4, pp. 313-322.

    Google Scholar 

  44. Belyaev, A.V., Fedotov, M.A., Korsunskii, V.I., et al., Koord. Khim., 1984, vol. 10, no. 7, pp. 911-918.

    Google Scholar 

  45. Cola, M., Gazz. Chim. Ital., 1960, vol. 90, nos. 7-8, pp. 1037-1047.

    Google Scholar 

  46. Jian-min, Z., Bing-y, Y., Zhen-yu, He, and Guangjia, Ma, Acta Chim. Sin., 1983, vol. 41, no. 3, pp. 284-288.

    Google Scholar 

  47. Belyaev, A.V., Emel'yanov, V.A., Khranenko, S.P., and Fedotov, M.A., Koord. Khim., 2001, vol. 27, no. 3, pp. 203-213.

    Google Scholar 

  48. Belyaev, A.V., Venediktov, A.B., Fedotov, M.A., and Khranenko, S.P., Koord. Khim., 1986, vol. 12, no. 5, pp. 690-699.

    Google Scholar 

  49. Bergström, P-A. and Lindgren, J., J. Phys. Chem., 1991, vol. 95, no. 20, pp. 7650-7655.

    Google Scholar 

  50. Read, M.C. and Sandström, M., Acta Chem. Scand., 1992, vol. 46, no. 12, pp. 1177-1182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaev, A.V., Renard, E.V., Khranenko, S.P. et al. State of Radiorhodium in High-Level Liquid Waste from Regeneration of Spent Nuclear Fuel. Radiochemistry 44, 546–558 (2002). https://doi.org/10.1023/A:1022324208620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022324208620

Keywords

Navigation