Skip to main content
Log in

Spike-Based Synaptic Plasticity and the Emergence of Direction Selective Simple Cells: Mathematical Analysis

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In the companion paper we presented extended simulations showing that the recently observed spike-timing dependent synaptic plasticity can explain the development of simple cell direction selectivity (DS) when simultaneously modifying the synaptic strength and the degree of synaptic depression. Here we estimate the spatial shift of the simple cell receptive field (RF) induced by the long-term synaptic plasticity, and the temporal phase advance caused by the short-term synaptic depression in response to drifting grating stimuli. The analytical expressions for this spatial shift and temporal phase advance lead to a qualitative reproduction of the frequency tuning curves of non-directional and directional simple cells. In agreement with in vivo recordings, the acquired DS is strongest for test gratings with a temporal frequency around 1–4 Hz. In our model this best frequency is determined by the width of the learning function and the time course of depression, but not by the temporal frequency of the ‘training’ stimuli. The analysis further reveals the instability of the initially symmetric RF, and formally explains why direction selectivity develops from a non-directional cell in a natural, directionally unbiased stimulation scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht D, Farrar S, Hamilton, D (1984) Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex. J. Physiol. (London) 347: 713-739.

    Google Scholar 

  • Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24: 139-166.

    Google Scholar 

  • Buchs N, Senn W (2002) Spike-based synaptic plasticity and the emergence of direction selective simple cells: Simulations results. J. Computational Neuroscience 13(3): 167-186.

    Google Scholar 

  • Carandini M, Heeger D, Movshon J (1997) Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience 17(21): 8621-8644.

    Google Scholar 

  • Carandini M, Heeger D, Senn W (2002) A synaptic explanation of suppression in visual cortex. J. Neuroscience 22(22): 10053-10065.

    Google Scholar 

  • Chance F, Nelson S, Abbott L (1998) Synaptic depression and the temporal response characteristics of V1 cells. J. Neuroscience 18(12): 4785-4799.

    Google Scholar 

  • Freeman T, Durand S, Kiper D, Carandini M (2002) Suppression without inhibition in visual cortex. Neuron 35: 759-771.

    Google Scholar 

  • Fu YX, Djupsund K, Gao H, Hayolen B, Shen K, Dan Y (2002) Temporal specifity in the cortical plasticity of visual space representation. Science 296(5575): 1999-2003.

    Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visuals cortex. J. Physiol. (London) 160: 106-154.

    Google Scholar 

  • Humphrey A, Saul A (1998) Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. J. Neuroscience 80: 2991-3004.

    Google Scholar 

  • Jagadeesh B, Wheat H, Ferster D (1993) Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262: 1901-1904.

    Google Scholar 

  • Maex R, Orban G(1996) Model circuit of spiking neurons generating directional selectivity in simple cells. J. Neurophysiol 75: 1515-1545.

    Google Scholar 

  • Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382: 807-810.

    Google Scholar 

  • Morrone M, Burr D, Maffei L (1982) Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc. R. Soc. Lon. B 216: 335-354.

    Google Scholar 

  • Ohzawa I, Sclar G, Freeman R (1985) Contrast gain control in the cat’s visual system. J. Neurophysiol. 54: 651-667.

    Google Scholar 

  • Reid R, Soodak R, Shapley R (1987) Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proc. Natl. Acad. Sci. USA 84(23): 8740-8744.

    Google Scholar 

  • Reid R, Soodak R, Shapley R (1991) Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J. Neurophysiol. 66(2): 505-529.

    Google Scholar 

  • Saul A, Humphrey A(1990) Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J. Neurophysiol. 64: 206-224.

    Google Scholar 

  • Saul A, Humphrey A (1992) Temporal frequency tuning of direction selectivity in cat visual cortex. Vis. Neurosci. 8: 365-372.

    Google Scholar 

  • Senn W, Tsodyks M, Markram H (2001) An algorithm for modifying neurotransmitter release probability based on pre-and postsynaptic spike timing. Neural Computation 13(1): 35-68.

    Google Scholar 

  • Senn W (2002) Beyond spike-timing: The role of nonlinear synaptic plasticity and unreliable synapses. Biol. Cybernetics 87: 344-355.

    Google Scholar 

  • Shapley R (1996) Linearity and non-linearity in cortical receptive field. Ciba Found Symp 184: 71-87.

    Google Scholar 

  • Stratford K, Tarczy-Hornoch K, Martin K, Baninster N, Jack J (1996) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382: 258-261.

    Google Scholar 

  • Yao H, Dan Y (2001) Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32: 315-323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senn, W., Buchs, N. Spike-Based Synaptic Plasticity and the Emergence of Direction Selective Simple Cells: Mathematical Analysis. J Comput Neurosci 14, 119–138 (2003). https://doi.org/10.1023/A:1021935100586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021935100586

Navigation