Skip to main content
Log in

Cytogenetic Aberrations in the Cells of Liver and Spermatogenic Epithelium in Senescence Accelerated SAMP1 and SAMR1 Mice

  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

It was shown that during ontogenesis, the mice prone to (SAMP1) and resistant (SAMR1) against accelerates senescence did not differ substantially in the frequency of cytogenetic aberrations in the hepatocytes and spermatogenic cells (spermatogonia and round spermatids). These data suggest that in the mice of both lines, the processes of appearance, development, and functioning of complex biological systems, such as liver and spermatogonic epithelium take place against the background of high genetic instability. The role of genetic instability in senescence is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Auerbach, Ch., Problemy mutageneza (Problems of Mutagenesis), Moscow: Mir, 1978.

    Google Scholar 

  • Boekelheide, K., Lee, J., Shipp, E.B., et al., Expression of Fas System-Related Genes in the Testis during Development and after Toxicant Exposure, Toxicol. Lett., 1998, vol. 102, pp. 503-508.

    Google Scholar 

  • Bohr, V.A. and Anson, R.M., DNA Damage, Mutation and Fine Structure DNA Repair in Aging, Mutat. Res., 1995, vol.338, pp. 25-34.

    Google Scholar 

  • Carp, R.I., Meeker, H.C., Kozlowski, P., and Sersen, E.A., An Endogenous Retrovirus and Exogenous Scrapie in a Mouse Model of Aging, Trends Microbiol., 2000, vol. 8, pp. 39-42.

    Google Scholar 

  • Curtis, H.J., Biological Mechanism Underlying the Aging Process, Science, 1963, vol. 141, pp. 686-694.

    Google Scholar 

  • Cutler, R.G., Genetic Stability and Oxidative Stress: Common Mechanisms in Aging and Cancer, EXS, 1992, vol. 62, pp. 31-46.

    Google Scholar 

  • Davidovich, M., Genetic Stability: The Key to Longevity? Med. Hypotheses, 1999, vol. 53, pp. 329-332.

    Google Scholar 

  • Dolle, M.E., Giese, H., van Steeg, H., and Vijg, J., Mutation Accumulation in vivo and the Importance of Genome Stability in Aging and Cancer, Results Probl. Cell Differ., 2000, vol. 29, pp. 165-180.

    Google Scholar 

  • Furuchi, T., Masuko, K., Nishimune, Y., et al., Inhibition of Testicular Germ Cells Apoptosis and Differentiation in Mice Misexpressing Bcl-2 In Spermatogonia, Development (Cambridge, UK), 1996, vol. 122, pp. 1703-1709.

    Google Scholar 

  • Guo, Z., Toichi, E., Hosono, M., et al., Genetic Analysis of Lifespan in Hybrid Progeny Derived from the SAMP1 Mouse Strain with Accelerated Senescence, Mech. Ageing Dev., 2000, vol. 118, pp. 35-44.

    Google Scholar 

  • He, P. and Yasumoto, K., Dietary Butylated Hydroxytoluene Counteracts with Paraquat to Reduce the Rate of Hepatic DNA Single Strand Breaks in Senescence-Accelerated Mice, Mech. Ageing Devel., 1994, vol. 76, pp. 43-48.

    Google Scholar 

  • Higami, Y., Shimokawa, I., Okomoto, T., et al., Effect of Ageing and Dietary Restriction on Hepatocyte Proliferation and Death in Male F334 Rats, Cell Tissue Res., 1997, vol.288, pp. 69-77.

    Google Scholar 

  • Higuchi, K., Wang, J., Kitagawa, K., et al., Accelerated Senile Amyloidosis Induced by Amyloidogenic Apoa-II Gene Shortens the Life Span of Mice But Does Not Accelerate the Rate of Senescence, J. Gerontol., 1996, vol. 51, pp.295-302.

    Google Scholar 

  • Hosokawa, M. and Fuisawa, H., Zhu Bing-Hua, et al., In vitro Study of the Mechanisms of Senescence Acceleration, Exp. Gerontol., 1997, vol. 32, pp. 197-203.

    Google Scholar 

  • Hosokawa, M., Fujisawa, H., Ax, S., et al., Age-Associated DNA Damage Is Accelerated in the Senescence-Accelerated Mice, Mech. Ageing Devel., 2000, vol. 118, pp. 61-70.

    Google Scholar 

  • Johnson, F.B., Sinclair, D.A., and Guarente, L., Molecular Biology of Aging, Cell (Cambridge, Mass.), 1999, vol. 96, pp. 291-302.

    Google Scholar 

  • Kipling, D. and Faragher, R.G.A., Ageing Hard Or Hardly Ageing?, Nature (London), 1999, vol. 398, pp. 191-192.

    Google Scholar 

  • Kirkwood, T.B.L. and Cremer, T., Cytogerontology Since 1881: A Reappraisal of August Weismann and a Review of Modern Progress, Hum. Genet., 1982, vol. 60, pp. 101-121.

    Google Scholar 

  • Kuro-o, M., Matsumura, Y., Aizawa, H., et al., Mutation of the Mouse Klotho Gene Leads to a Syndrome Resembling Ageing, Nature (London), 1998, vol. 390, pp. 45-51.

    Google Scholar 

  • Kuzovatov, S.I., Krivtsov, V.Yu., and Vakhtin, Yu.B., Internuclear Chromosome Bridges and Nuclei with Protrusions in Populations of Rat Rhabdosarcoma RA-23 Cells, Tsitologiya, 2000, vol. 42, pp. 1097-1102.

    Google Scholar 

  • Lee, J.W., Righburg, J.H., Shipp, E., et al., The Fas System, a Regulator of Testicular Germ Cell Apoptosis, Is Differentially Up-Regulated in Sertoli Cell Versus Germ Cell Injury of the Testis, Endocrinology, 1999, vol. 140, pp. 852-858.

    Google Scholar 

  • Lindahl, T., Suppression of Spontaneous Mutagenesis in Human Cells by DNA Base Excision-Repair, Mutat. Res., 2000, vol. 462, pp. 129-135.

    Google Scholar 

  • Lundberg, A.S., Hahn, W.C., Gupta, P., and Weinberg, R.A., Genes Involved in Senescence and Immortalization, Current Opinion Cell Biol., 2000, vol. 12, pp. 705-709.

    Google Scholar 

  • Lutz, W.K., Endogenous Genotoxic Agents and Processes as a Basis of Spontaneous Carcinogenesis, Mutat. Res., 1990, vol. 275, pp. 305-315.

    Google Scholar 

  • McClearn, G.E., Biogerontologic Theories, Exp. Gerontol., 1997, vol. 32, pp. 3-10.

    Google Scholar 

  • Medvedev, Z.A., On the Immortality of the Germ Line: Genetic and Biochemical Mechanism. A Review, Mech. Ageing Devel., 1981, vol. 17, pp. 331-359.

    Google Scholar 

  • Medvedev, Z.A., An Attempt at a Rational Classification of Theories of Ageing, Biol. Rev., 1990, vol. 65, pp. 375-398.

    Google Scholar 

  • Muller, W.U. and Streffer, C., Micronucleus Assays, Advances in Mutagenesis Research, Obe, G., Ed., Berlin: Springer, 1994, pp. 4-134.

    Google Scholar 

  • Nagley, P. and Yau-Huei Wei, Ageing and Mammalian Mitochondrial Genetics, Trends. Genet., 1998, vol. 14, pp. 513-517.

    Google Scholar 

  • Nehlin, J.O., Skovgaard, G.L., and Bohr, V.A., The Werner syndrome. A Model for the Study of Human Aging, Ann. Acad., 2000, vol. 908, pp. 167-179.

    Google Scholar 

  • Nisitani, S., Hosokawa, M., Sasaki, M.S., et al., Acceleration of Chromosome Aberrations in the Senescence-Accelerated Stains of Mice, Mutat. Res., 1990, vol. 237, pp. 221-228.

    Google Scholar 

  • Odagiri, Y., Uchida, H., Hosokawa, M., et al., Accelerated Accumulation of Somatic Mutations in the Senescence-Accelerated Mouse, Nature Genetics, 1998, vol. 19, pp. 116-117.

    Google Scholar 

  • Pichierri, P., Franchitto, A., Mosesso, P., and Palitti, F., Werner's Syndrome Cell Lines Are Hypersensitive to Camptothecin-Induced Chromosomal Damage, Mutat. Res., 2000, vol.456, pp. 45-57.

    Google Scholar 

  • Print, C.G., Loveland, K.L., Gibson, L., et al., Apoptosis Regulator Bcl-W Is Essential for Spermatogenesis but Appears Otherwise Redundant, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 12421-12431.

    Google Scholar 

  • Rapoport, I.A., Mikrogenetika (Microgenetics), Moscow: Nauka, 1965.

    Google Scholar 

  • Rapoport, I.A., Enzymatic Control of Mutagenesis in the Cell, Khimicheskii mutagenez i selektsiya (Chemical Mutagenesis and Selection), Moscow: Nauka, 1971, pp. 113-129.

    Google Scholar 

  • Rapoport, I.A., Discovery of Chemical Mutagenesis, Izbrannye trudy (Selected Works), Moscow: Nauka, 1993.

    Google Scholar 

  • Riggs, J.E., Aging, Increasing Genomic Entropy, and Neurodegenerative Disease, Neurol. Clin., 1999, vol. 16, pp. 757-770.

    Google Scholar 

  • Rodriguez, I., Ody, C., Araki, K., et al., An Early and Massive Wave of Germinal Cell Apoptosis Is Required for the Development of Functional Spermatogenesis, EMBO J., 1997, vol. 16, pp. 2262-2270.

    Google Scholar 

  • Ross, A., Waimare, K., Moss, J., et al., Testicular Degeneration in Bcl-W-Deficient Mice, Nature Genetics, 1998, vol.18, pp. 251-256.

    Google Scholar 

  • Rotter, V., Schwartz, D., Almon, E., et al., Mice with Induced Level of Protein Exhibit the Testicular Giant-Cell Degenerative Syndrome, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 9075-9079.

    Google Scholar 

  • Schwartz, D., Goldfinger, N., Kam, Z., and Rotter, V., p53 Control Low DNA Damage-Dependent Premeiotic Checkpoint and Facilitates DNA Repair during Spermatogenesis, Cell Growth Differ., 1999, vol. 10, pp. 665-675.

    Google Scholar 

  • Shen, J.C. and Loeb, L.A., The Werner Syndrome Gene. The Molecular Basis of RecQ Helicase-Deficiency Diseases, Trends. Genet., 2000, vol. 16, pp. 213-220.

    Google Scholar 

  • Shimizu, N., Itoh, N., Utiyama, H., and Wahl, G.M., Selective Entrapment of Extrachromosomally Amplified DNA by Nuclear Budding and Micronucleation during S Phase, J. Cell Biol., 1998, vol. 140, pp. 1307-1320.

    Google Scholar 

  • Shimura, M., Tanaka, Y., Nakamura, S., et al., Micronuclei Formation and Aneuploidy Induced by Vpr, an Accessory Gene of Human Immunodeficiency Virus Type 1, FASEB J., 1999, vol. 13, pp. 621-637.

    Google Scholar 

  • Simons, J.W., Coming of Age: “Dysgenetics”-a Theory Connecting Induction of Persistent Delayed Genomic Instability with Disturbed Cellular Ageing, Int. J. Radiat. Biol., 2000, vol. 76, pp. 1533-1543.

    Google Scholar 

  • Slagboom, P.E., The Aging Genome: Determinant or Target?, Mutat. Res., 1990, vol. 237, pp. 183-187.

    Google Scholar 

  • Strehler, B.L., Deletional Mutations Are the Basic Cause of Aging: Historical Perspectives, Mutat. Res., 1995, vol. 338, pp. 3-17.

    Google Scholar 

  • Szilard, L., On the Nature of the Aging Process, Proc. Natl. Acad. Sci. USA, 1959, vol. 45, pp. 30-45.

    Google Scholar 

  • Takeda, T., Senescence-Accelerated Mouse (SAM): With Special Reference to Age-Associated Pathologies and Their Modulation, Nippon Eiseigaku Zasshi, 1996, vol. 51, pp. 569-578.

    Google Scholar 

  • Takeda, T., Senescence-Accelerated Mouse (SAM): A Biogerontological Resource in Aging Research, Neurobiol. Ageing, 1999, vol. 20, pp. 105-110.

    Google Scholar 

  • Takeda, T., Hosokawa, M., Takeshita, S., et al., A New Murine Model of Accelerated Senescence, Mech. Ageing Devel., 1981, vol. 17, pp. 183-194.

    Google Scholar 

  • Takeda, T., Hosokawa, M., and Huguchi, K., Senescence-Accelerated Mouse (SAM). A Novel Murine Model of Aging, The SAM Model of Senescence, Takeda, T., Ed., Amsterdam: Excerpta Medica, 1994, pp. 15-22.

    Google Scholar 

  • Takeda, T., Hosokawa, M., and Higuchi, K., Senescence-Accelerated Mouse (SAM): A Novel Murine Model of Senescence, Exp. Gerontol., 1997a, vol. 32, pp. 105-109.

    Google Scholar 

  • Takeda, T., Matsushita, T., Kurozumi, M., et al., Pathobiology of the Senescence-Accelerated Mouse (SAM), Exp. Gerontol., 1997b, vol. 32, pp. 117-127.

    Google Scholar 

  • Thakur, M.K., Oka, T., and Natori, Y., Gene Expression and Ageing, Mech. Ageing Devel., 1993, vol. 66, pp. 283-298.

    Google Scholar 

  • Tobita, M., Nakamura, S., Nagano, I., et al., DNA Single-Strand Breaks Hippocampal Regions of Senescence-Accelerated Mice (SAMP8/Ta) Detected by Modified in situ Nick Translation Procedure, The SAM Model of Senescence, Takeda, T., Ed., Amsterdam: Excerpta Medica, 1994, pp. 125-128.

    Google Scholar 

  • Uryvaeva, I.V. and Delone, G.V., An Improved Method of Mouse Liver Micronucleus Analysis: An Application to Age-Related Genetic Alteration and Polyploidy Study, Mutat. Res., 1995, vol. 334, pp. 71-80.

    Google Scholar 

  • Uryvaeva, I.V. and Delone, G.V., Estimation of the Level of Genetic Damages Accumulated with Age and Induced Genetic Age Damages in the Cells According to the Production of Micronuclei, Ontogenez, 1992, vol. 23, pp. 370-377.

    Google Scholar 

  • Uryvaeva, I.V. and Faktor, V.M., Fraction of Liver Growth, Its Ploidy Composition, and Changes during Senescence, Ontogenez (Moscow), 1975, vol. 6, pp. 458-465.

    Google Scholar 

  • Uryvaeva, I.V., Marshak, T.L., Zakhidov, S.T., et al., Age-Related Accumulation of Micronuclear Aberrations in Hepatocytes of Senescence-Accelerated SAM mice, Dokl. Ross. Akad. Nauk, 1999, vol. 368, pp. 703-705.

    Google Scholar 

  • Uryvaeva, I.V., Marshak, T.L., Zakhidov, S.T., et al., Genomic Disturbances, Elevated Death Rate and Proliferation of Hepatocytes in SAM (Senescence-Accelerated Mouse) Mice, IV Mezhdunar. simpozium “Biologicheskie mekhanizmy stareniya” (IV International Symposium “Biological Mechanisms of Aging”), Kharkov, 2000, p. 53.

  • Vijg, J., Somatic Mutations and Aging: A Re-Evaluation, Mutat. Res., 2000, vol. 447, pp. 117-135.

    Google Scholar 

  • Xia, C., Higuchi, K., Shimizu, M., et al., Genetic Typing of the Senescence-Accelerated Mouse (SAM) Strains with Microsatellite Markers, Mamm. Genome, 1999, vol. 10, pp. 235-238.

    Google Scholar 

  • Yan, W., Samson, M., Jegou, B., and Toppori, J., Bcl-W Forms Complexes with Bax and Bak, and Elevated Ratios of Spermatocyte Apoptosis in the Testis, Molec. Endocrinol., 2000, vol. 14, pp. 682-699.

    Google Scholar 

  • Yin, Y., Stahl, B.C., DeWolf, W.C., and Morgentaler, F., p53-Mediated Germ Cell Quality Control in Spermatogenesis, Dev. Biol., 1998, vol. 204, pp. 165-171.

    Google Scholar 

  • Zakhidov, S.T., Processes of Normal and Atypical Spermatogenesis in Animals, Doctoral (Biol.) Dissertation, Moscow: Mosk. Gos. Univ., 1993.

    Google Scholar 

  • Zakhidov, S.T., Genetic Theory of Aging, Sinergetika (Synergetics), Moscow: Mosk. Gos. Univ., 1999, vol. 2, pp. 185-193.

    Google Scholar 

  • Zakhidov, S.T., Semenova, M.L., Gordeeva, O.F., and Belyaeva, A.A., Spermatogenesis in SAMP1 Mice Prone to Accelerated Senescence, Dokl. Ross. Akad. Nauk, 1999, vol. 365, pp. 403-405.

    Google Scholar 

  • Zakhidov, S.T., Gopko, A.V., Marshak, T.L., et al., Quantitative Patterns of Mutational Process during Spermatogenesis in SAM (Senescence-Accelerated Mouse) Mice, IV Mezhdunar. simpozium “Biologicheskie mekhanizmy stareniya” (IV International Symposium “Biological mechanisms of Aging”), Kharkov, 2000.

  • Zakhidov, S.T., Gordeeva, O.F., and Marshak, T.L., Biological Model of Accelerated Senescence. 1. Rate of Spontaneous Mutational Process during Spermatogenesis of SAM (Senescence-Accelerated Mouse) Mice, Izv. Akad. Nauk, Ser. Biol., 2001, no. 1, pp. 23-30.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakhidov, S.T., Marshak, T.L., Uryvaeva, I.V. et al. Cytogenetic Aberrations in the Cells of Liver and Spermatogenic Epithelium in Senescence Accelerated SAMP1 and SAMR1 Mice. Russian Journal of Developmental Biology 33, 362–373 (2002). https://doi.org/10.1023/A:1021158727040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021158727040

Navigation