Skip to main content
Log in

Changing concepts about the distribution of Photosystems I and II between grana-appressed and stroma-exposed thylakoid membranes

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Thylakoid membranes of higher plants and some green algae, which house the light-harvesting and energy transducing functions of the chloroplast, are structurally unique. The concept of the photosynthetic unit of the 1930s (Robert Emerson, William Arnold and Hans Gaffron), needing one reaction center per hundreds of antenna molecules, was modified by the discovery of the Enhancement effect in oxygen evolution in two different wavelengths of light (Robert Emerson and his coworkers) in the late 1950s, followed by the 1960 Z scheme of Robin Hill and Fay Bendall. It was realized that two light reactions and two pigment systems were needed for oxygenic photosynthesis. Changing ideas about the distribution of Photosystem II (PS II) and PS I between the green-appressed and stroma-exposed thylakoid membrane domains, which led to the concept of lateral heterogeneity, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åckerlund H-E, Andersson B and Albertsson P-Å (1976) Isolation of Photosystem II enriched membrane vesicles from spinach chloroplasts by phase partition. Biochim Biophys Acta 449: 525–535

    Article  Google Scholar 

  • Albertsson P-Å (1971) Partition of Cell Particles and Macromolecules (2nd edn). Wiley-Interscience, New York

    Google Scholar 

  • Albertsson P-Å (1995) The structure and function of the chloroplast photosynthetic membrane-a model for domain organization. Photosynth Res 46: 141–149

    Article  CAS  Google Scholar 

  • Anderson JM (1975) The molecular organization of chloroplast thylakoids. Biochim Biophys Acta 416: 191–235

    PubMed  CAS  Google Scholar 

  • Anderson JM (1981) Consequences of spatial separation of Photosystems 1 and 2 in thylakoid membranes of higher plant chloroplasts. FEBS Lett 124: 1–10

    Article  CAS  Google Scholar 

  • Anderson JM (1982) Distribution of the cytochromes between the appressed membranes of grana stacks and stroma-exposed thylakoid regions. FEBS Lett 138: 62–66

    Article  CAS  Google Scholar 

  • Anderson JM and Andersson B (1982) The architecture of photosynthetic membranes: lateral and transverse organization. Trends Biochem Sci 7: 288–292

    Article  CAS  Google Scholar 

  • Anderson JM and Boardman NK (1964) Studies on the greening of dark-grown bean plants II. Development of photochemical activity. Aust J Biol Sci 17: 93–101

    Google Scholar 

  • Anderson JM and Boardman NK (1966) Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Biochim Biophys Acta 112: 403–421

    CAS  Google Scholar 

  • Anderson JM, Waldron JC and Thorne SW (1978) Chlorophyllprotein complexes of spinach and barley thylakoids: spectral characterization of six complexes resolved by an improved electrophoretic procedure. FEBS Lett 92: 227–233

    Article  CAS  Google Scholar 

  • Anderson JM, Brown JS, Lam E and Malkin R (1983) Chlorophyll b: an integral component of Photosystem I of higher plant chloroplasts. Photochem Photobiol 38: 205–210

    CAS  Google Scholar 

  • Andersson B (1978) Separation of spinach chloroplast lamellae fragments by phase partition including the isolation of inside-out thylakoids. PhD Thesis, Lund University, Sweden

    Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440.

    Article  PubMed  CAS  Google Scholar 

  • Armond PA and Arntzen CJ (1977) Localization and characterization of Photosystem II in grana and stroma lamellae. Plant Physiol 59: 398–404

    PubMed  CAS  Google Scholar 

  • Arnon DI, Losada M, Whatley FR, Tsujimoto HY, Hall DO and Horton AA (1961) Photosynthetic phosphorylation and molecular oxygen. Proc Natl Acad Sci USA 47: 1314–1334

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI, Tsujimoto HY and Tang MS (1981) Proton transport in photo-oxidation of water: a new perspective on photosynthesis. Proc Natl Acad Sci USA 5: 2942–2946

    Article  Google Scholar 

  • Arntzen CJ, Dilley RA and Crane FL (1969) A comparison of chloroplast membrane surfaces visualized by freeze-etch and negative staining techniques; and ultrastructural characterization of membrane fractions obtained from digitonin-treated spinach chloroplasts. J Cell Biol 43: 16–31

    Article  CAS  Google Scholar 

  • Boardman NK and Anderson JM (1964) Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a and chlorophyll b and their possible role in the light reactions of photosynthesis. Nature 203: 166–167

    Article  CAS  Google Scholar 

  • Boardman NK Thorne SW and Anderson JM (1966) Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc Natl Acad Sci USA 56: 586–593

    Article  PubMed  CAS  Google Scholar 

  • Boardman NK, Anderson JM and Goodchild DJ (1978) Chlorophyll-protein complexes and structure of mature and developing chloroplasts. Cur Top Bioenerg 8: 35–109

    CAS  Google Scholar 

  • Butler WL (1997) Energy distribution in the photosynthetic apparatus of plants. Brookhaven Symp Biol 28: 338–346

    Google Scholar 

  • Butler WL and Kitajima M (1975) Energy transfer between Photosystem II and Photosystem I in chloroplasts. Biochim Biophys Acta 396: 72–85

    Article  PubMed  CAS  Google Scholar 

  • Cox RP and Andersson B (1981) Lateral and transverse organisation of the cytochromes in the chloroplast thylakoid membranes. Biochem Biophys Res Commun 103: 1336–1342

    PubMed  CAS  Google Scholar 

  • Davenport HE (1952) Cytochrome components in chloroplasts. Nature 170: 1112–1114

    Article  PubMed  CAS  Google Scholar 

  • Duysens LNM (1989) The discovery of the two photosynthetic systems: a personal account. Photosynth Res 21: 61–79

    CAS  Google Scholar 

  • Duysens LMN and Amesz J (1962) Function and identification of two photochemical systems in photosynthesis. Biochim Biophys Acta 64: 243–260

    Article  CAS  Google Scholar 

  • Duysens LMN, Amesz J and Kamp BM (1961) Two photochemical systems in photosynthesis. Nature 190: 510–511

    Article  PubMed  CAS  Google Scholar 

  • Emerson R and Arnold WA (1932) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Article  CAS  Google Scholar 

  • Emerson R and Lewis CM (1943) The dependence of quantum yield on Chlorella photosynthesis on wavelength of light. Am J Bot 30: 165–178

    Article  CAS  Google Scholar 

  • Emerson R and Rabinowitch E (1960) Red drop and role of auxiliary pigments in photosynthesis. Plant Physiol 35: 477–485

    PubMed  CAS  Google Scholar 

  • Emerson R, Chalmers RV and Cederstrand CN (1957) Some factors limiting the long-wavelength limit of photosynthesis. Proc Natl Acad Sci USA 43: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Gaffron H and Wohl K (1936) The theory of assimilation. Naturwissenschaften 24: 81–90; 103-107

    Article  CAS  Google Scholar 

  • Govindjee and Rabinowitch E (1960) Two forms of chlorophyll a with distinct photochemical functions. Science 132: 355–356

    PubMed  CAS  Google Scholar 

  • Govindjee, Ichimura S, Cederstrand C and Rabinowitch E (1960) Effect of combining far-red light with shorter wave light on the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89: 322–323

    Article  PubMed  CAS  Google Scholar 

  • Hill R (1965) The biochemists' green mansions: the photosynthetic electron-transport chain in plants. Essays Biochem 1: 121–151

    PubMed  CAS  Google Scholar 

  • Hill R and Bendall F (1960) Function of two cytochrome components in chloroplasts: a working hypothesis. Nature 186: 136–140

    Article  CAS  Google Scholar 

  • Hill R and Scarisbrick R (1951) The haemitin compounds of leaves. New Phytol 50: 98–111

    Article  CAS  Google Scholar 

  • Kautsky H, Appel W and Amman H (1960) Chlorophyll Fluorescenz und Kohlensäure Assimilation. Die Fluorescenz Kurve and die Photochemie der Pflanze. Biochem Z 332: 227–292

    Google Scholar 

  • Kok B and Hoch G (1961) Spectral changes in photosynthesis. In: McElroy WD and Glass B (eds) Light and Life, pp 397–423. The John Hopkins Press, Baltimore, Maryland

    Google Scholar 

  • Kupke DW and French CS (1960) Relationship of chlorophyll to protein and lipoids; molecular and colloidal solutions. Chlorophyll units. Encycl Plant Physiol V: 298–322

    Google Scholar 

  • Lundegårdh H (1961) Response of chloroplast cytochromes to light and substrates. Nature 192: 243–248

    Article  PubMed  Google Scholar 

  • Miller KR and Staehelin LA (1976) Analysis of the thylakoid outer surface: coupling factor is limited to unstacked membrane regions. J Cell Biol 68: 30–47

    Article  PubMed  CAS  Google Scholar 

  • Mullet JE, Burke JJ and Arntzen CJ (1980) Chlorophyll proteins of Photosytem I. Plant Physiol 65: 814–822

    Article  PubMed  CAS  Google Scholar 

  • Robinson GW (1967) Excitation transfer and trapping in photosynthesis. Brookhaven Symp Biol 19: 16–48

    Google Scholar 

  • Sane PV, Goodchild DJ and Park RB (1970) Characterisation of chloroplast Photosystems 1 and 2 separated by a non-detergent method. Biochim Biophys Acta 216: 162–178

    Article  PubMed  CAS  Google Scholar 

  • Sauer K (1975) Primary events and trapping In: Govindjee (ed) Bioenergetics of Photosynthesis, pp 116–175. Academic Press, New York

    Google Scholar 

  • Seely GR (1973) Energy transfer in a model of the photosynthetic unit of green plants. J Theor Biol 40: 189–199

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ (1971) The molecular organization of biological membranes. In: Rothfield LI (ed) Structure and Function of Biological Membranes, pp 145–222. Academic Press, New York

    Google Scholar 

  • Singer SJ and Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731

    PubMed  CAS  Google Scholar 

  • Staehelin LA, Armond PA and Miller KR (1977) Chloroplast membrane organization at the supramolecular level and its functional implications. Brookhaven Symp Biol 28: 278–315

    Google Scholar 

  • Szent-Györgi A (1957) Bioenergetics. Academic Press, New York

    Google Scholar 

  • Thornber JP (1975) Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu Rev Plant Physiol 26: 127–158

    Article  CAS  Google Scholar 

  • Thornber JP and Barber J (1979) Photosynthetic pigments and models for their organization in vivo. Top Photosynth 3: 27–70

    CAS  Google Scholar 

  • Thornber JP, Alberte RS, Hunter FA, Shiozawa JA and Kan KS (1977) The organization of chlorophyll in the plant photosynthetic unit. Brookhaven Symp Biol 28: 132–148

    Google Scholar 

  • Trebst A (1974) Energy conservation in photosynthetic electron transport of chloroplasts. Annu Rev Plant Physiol 25: 423–458

    Article  CAS  Google Scholar 

  • Vernon LP, Shaw ER and Ke B (1966) A photochemically active particle derived from chloroplasts by the action of Triton X-100. J Cell Biol 241: 4101–4109

    CAS  Google Scholar 

  • Webber AN, Platt-Aloia KA, Heath R and Thomson WW (1988) The marginal region of thylakoid membranes: a partial characterization by Tween 20 solubilization of spinach thylakoids. Physiol Plant 72: 288–297

    Article  CAS  Google Scholar 

  • Weier TE and Benson AA (1966) The molecular nature of chloroplast membranes. In: Goodwin TE (ed) Biochemistry of Chloroplasts, pp 91–113. Academic Press, London

    Google Scholar 

  • Wessels JSC (1962) Separation of the two photochemical systems of photosynthesis by digitonin fragmentation. Biochim Biophys Acta 65: 501–504

    Article  Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191: 194–196

    Article  PubMed  CAS  Google Scholar 

  • Wollman FA and Bennoun P (1982) A new chlorophyll-protein complex related to Photosystem I in Chlamydomonas reinhardii. Biochim Biophys Acta 680: 352–360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.M. Changing concepts about the distribution of Photosystems I and II between grana-appressed and stroma-exposed thylakoid membranes. Photosynthesis Research 73, 157–164 (2002). https://doi.org/10.1023/A:1020426525648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020426525648

Navigation