Skip to main content
Log in

Adsorbate (substrate)-induced restructuring of active transition metal sites of heterogeneous and enzyme catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Adsorbate-induced restructuring of transition metal surfaces and those of transition metal clusters embedded in metalloproteins has been shown to be a dominant phenomenon by LEED surface crystallography and X-ray crystallography studies, respectively. The restructuring is thermodynamically driven and is more facile for low-coordination metal sites (surface defects, steps and kinks, and nanoclusters). Dynamic restructuring of catalytically active transition metal sites may occur on the time scale of catalytic turnover or faster. The structural flexibility of transition metal surfaces and clusters embedded in enzymes could provide for seamless evolutionary changes of catalytic chemistry from inorganic to more complex and selective bio-organic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Somorjai, Catal. Lett. 12 (1992) 17; Ann. Rev. Phys. Chem. 45 (1994) 721.

    Google Scholar 

  2. D.E. Koshland, Jr., J. Cell. Comp. Physiol. 54 (1959) 245; Adv. Enzymol. 22 (1960) 1.

    Google Scholar 

  3. A.M. Wander, M.A. Van Hove and G.A. Somorjai, Phys. Rev. Lett. 67 (1991) 626.

    Google Scholar 

  4. P.J. Rous, M.A. Van Hove and G.A. Somorjai, Surf. Sci. 226 (1990) 15.

    Google Scholar 

  5. P.R. Watson, M.A. Van Hove and K. Herman, Atlas of Surface Structures, Vols. 1 A and B, J. Phys. Chem. Ref. Data, Monograph No. 5 (Am. Chem. Soc., New York, 1994).

    Google Scholar 

  6. B.J. McIntyre, M. Salmeron and G.A. Somorjai, J. Vac. Sci. Tech. A 11 (1993) 1964.

    Google Scholar 

  7. N. Krause and A. Gaussmann, Surf. Sci. 266 (1992) 51.

    Google Scholar 

  8. J.D. Batteas, A. Barbieri, E.K. Starkey, M.A. Van Hove and G.A. Somorjai, Surf. Sci. 313 (1994) 341.

    Google Scholar 

  9. M. Gierer, A. Barbieri, M.A. Van Hove and G.A. Somorjai, Appl. Surf. Sci. 391 (1997) 176.

    Google Scholar 

  10. M. Simonetta, Nouv. J. Chim. 10 (1986) 533.

    Google Scholar 

  11. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942.

    Google Scholar 

  12. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Phys. Chem. 100 (1996) 16302.

    Google Scholar 

  13. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Chem. Soc. Faraday Trans. 92 (1996) 4717.

    Google Scholar 

  14. X. Su, P.S. Cremer, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 119 (1997) 3994.

    Google Scholar 

  15. R. Imbihl and G. Ertl, Chem. Rev. 95 (1995) 697.

    Google Scholar 

  16. M. Boudart, Adv. Catal. 20 (1969) 153.

    Google Scholar 

  17. M. Salmeron, R.J. Gale and G.A. Somorjai, J. Chem. Phys. 70 (1979) 2807.

    Google Scholar 

  18. D.R. Strongin, S.R. Bare and G.A. Somorjai, J. Catal. 103 (1987) 289.

    Google Scholar 

  19. S.M. Davis, F. Zaera and G.A. Somorjai, J. Am. Chem. Soc. 104 (1982) 7453.

    Google Scholar 

  20. C.D. Garner, J. Chem. Soc. Dalton Trans. (1997) 3903.

  21. E.I. Steifel, J. Chem. Soc. Dalton Trans. (1997) 3915.

  22. M.F. Perutz and G. Fermi, Haemoglobin and Myoglobin: Atlas of Molecular Structure in Biology, Vol. 2 (Oxford University Press, New York, 1981).

    Google Scholar 

  23. E. Antoin and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Liquids (North-Holland, Amsterdam, 1971).

    Google Scholar 

  24. R.E. Dickerson and I. Geis, Hemoglobin Structure, Function, Evolution, and Pathology (Benjamin/Cummings, Menlo Park, CA, 1983).

    Google Scholar 

  25. K.A. Magnus, B. Hayes, H. Ton-That, C. Bonaventura, J. Bonaventura and W.G. Hal, Proteins: Struct. Funct. Genet. 19 (1994) 302.

    Google Scholar 

  26. W.P. Jencks, Ann. Rev. Biochem. 66 (1997) 1.

    Google Scholar 

  27. H.P. Lu, L.Y. Xun and X.S. Xie, Science 282 (1998) 1877.

    Google Scholar 

  28. C.L. Tsou, Science 262 (1993) 380.

    Google Scholar 

  29. H. Beinert, R.H. Holm and E. Munck, Science 277 (1997) 653.

    Google Scholar 

  30. M.C. Kennedy, T.A. Kent, M. Emptage, H. Merklet, H. Beinert and E. Münck, J. Biol. Chem. 259 (1984) 14463.

    Google Scholar 

  31. J.B. Howard and D.C. Rees, Chem. Rev. 96 (1996) 2965.

    Google Scholar 

  32. J. Kim and D.C. Rees, Nature 360 (1992) 553.

    Google Scholar 

  33. J.T. Bolin, A.E. Ronco, T.V. Morgan, L.E. Martenson and N.H. Xuong, Proc. Natl. Acad. Sci. 98 (1993) 1078.

    Google Scholar 

  34. P.E.M. Siegbahn, J. Westerberg, M. Svensson and R.H. Crabtree, J. Phys. Chem. 102 (1998) 1615.

    Google Scholar 

  35. T.A. Bazhenova and A.E. Shilov, Coord. Chem. Rev. 144 (1995) 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somorjai, G., Borodko, Y. Adsorbate (substrate)-induced restructuring of active transition metal sites of heterogeneous and enzyme catalysts. Catalysis Letters 59, 89–91 (1999). https://doi.org/10.1023/A:1019064319982

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019064319982

Navigation