Skip to main content
Log in

Height Representation, Critical Exponents, and Ergodicity in the Four-State Triangular Potts Antiferromagnet

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the four-state antiferromagnetic Potts model on the triangular lattice. We show that the model has six types of defects which diffuse and annihilate according to certain conservation laws consistent with their having a vector-valued topological charge. Using the properties of these defects, we deduce a (2+2)-dimensional height representation for the model and hence show that the model is equivalent to the three-state Potts antiferromagnet on the Kagomé lattice and to bond-coloring models on the triangular and honeycomb lattices. We also calculate critical exponents for the ground-state ensemble of the model. We find that the exponents governing the spin–spin correlation function and spin fluctuations violate the Fisher scaling law because of constraints on path length which increase the effective wavelength of the spin operator on the height lattice. We confirm our predictions by extensive Monte Carlo simulations of the model using the Wang–Swendsen–Kotecký cluster algorithm. Although this algorithm is not ergodic on lattices with toroidal boundary conditions, we prove that it is ergodic on lattices whose topology has no noncontractible loops of infinite order, such as the projective plane. To guard against biases introduced by lack of ergodicity, we perform our simulations on both the torus and the projective plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. van Beijeren, Exactly solvable model for the roughening transition of a crystal surface, Phys. Rev. Lett. 38:993–996 (1977).

    Google Scholar 

  2. H. J. F. Knops, Renormalization connection between the eight-vertex model and the Gaussian model, Ann. Phys. 128:448–462 (1981).

    Google Scholar 

  3. H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zero-temperature tri-angular Ising antiferromagnet, J. Phys. A 15:L631–L637 (1982).

    Google Scholar 

  4. B. Nienhuis, H. J. Hilhorst, and H. W. J. Blöte, Triangular SOS models and cubic-crystal shapes, J. Phys. A 17:3559–3581 (1984).

    Google Scholar 

  5. W. Zheng and S. Sachdev, Sine-Gordon theory of the non-Ne- el phase of two-dimensional quantum antiferromagnets, Phys. Rev. B 40:2704–2707 (1989).

    Google Scholar 

  6. L. S. Levitov, Equivalence of the dimer resonating-valence-bond problem to the quantum roughening problem, Phys. Rev. Lett. 64:92–94 (1990).

    Google Scholar 

  7. M. P. M. den Nijs, M. P. Nightingale, and M. Schick, Critical fan in the antiferromagnetic Potts model, Phys. Rev. B 26:2490–2500 (1982).

    Google Scholar 

  8. D. R. Nelson, Defect-mediated phase transitions, in Phase Transitions and Critical Phenomena, Vol. 7, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983).

    Google Scholar 

  9. B. Nienhuis, Coulomb gas representations of phase transitions in two dimensions, in Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1987).

    Google Scholar 

  10. D. A. Huse and A. D. Rutenberg, Classical antiferromagnets on the Kagome- lattice, Phys. Rev. B 45:7536–7539 (1992).

    Google Scholar 

  11. J. Kondev and C. L. Henley, Four-coloring model on the square lattice: A critical ground state, Phys. Rev. B 52:6628–6639 (1995).

    Google Scholar 

  12. R. Raghavan, C. L. Henley, and S. L. Arouh, New two-color dimer models with critical ground states, J. Stat. Phys. 86:517–550 (1997).

    Google Scholar 

  13. J. K. Burton, Jr. and C. L. Henley, A constrained Potts antiferromagnet model with an interface representation, J. Phys. A 30:8385–84113 (1997).

    Google Scholar 

  14. R. J. Baxter, Colorings of a hexagonal lattice, J. Math. Phys. 11:784–789 (1970).

    Google Scholar 

  15. J. Kondev and C. L. Henley, Conformal charge and exact exponents in the n=2 fully packed loop model, Phys. Rev. Lett 73:2786 (1994).

    Google Scholar 

  16. J.-S. Wang, R. H. Swendsen, and R. Kotecký, Antiferromagnetic Potts models, Phys. Rev. Lett. 63:109–112 (1989).

    Google Scholar 

  17. J.-S. Wang, R. H. Swendsen, and R. Kotecký, Three-state antiferromagnetic Potts models: A Monte Carlo study, Phys. Rev. B 42:2465–2474 (1990).

    Google Scholar 

  18. J. Salas and A. D. Sokal, private communication.

  19. G. T. Barkema and M. E. J. Newman, Monte Carlo simulation of ice models, Phys. Rev. E 57:1155–1166 (1998).

    Google Scholar 

  20. S. J. Ferreira and A. D. Sokal, Antiferromagnetic Potts models on the square lattice: A high-precision Monte Carlo study, cond-mat/9811345.

  21. R. J. Baxter, q colourings of the triangular lattice, J. Phys. A 19:2821–2839 (1986).

    Google Scholar 

  22. R. Schrock and S.-H. Tsai, Upper and lower bounds for the ground state entropy of anti-ferromagnetic Potts models, Phys. Rev. E. 55:6791–6794 (1997).

    Google Scholar 

  23. O. Ore, The Four-Color Problem (Academic Press, New York, 1967).

    Google Scholar 

  24. R. J. Baxter, S. B. Kelland, and F. Y. Wu, Equivalence of the Potts model or Whitney polynomial with an ice-type model, J. Phys. A 9:397–406 (1976).

    Google Scholar 

  25. J. Kondev and C. L. Henley, Geometrical exponents of contour loops on random Gaussian surfaces, Phys. Rev. Lett. 74:4580–4583 (1995).

    Google Scholar 

  26. H. W. J. Blöte and B. Nienhuis, Fully packed loop model on the honeycomb lattice, Phys. Rev. Lett. 72:1372–1375 (1994).

    Google Scholar 

  27. M. T. Batchelor, J. Suzuki, and C. M. Yung, Exact results for Hamiltonian walks from the solution of the fully packed loop model on the honeycomb lattice, Phys. Rev. Lett. 73:2646–2649 (1994).

    Google Scholar 

  28. B. Nienhuis, Critical spin-1 vertex models and O(n) models, Int. J. Mod. Phys. B 4:929–942 (1990).

    Google Scholar 

  29. J. L. Jacobsen, On the universality of compact polymers, J. Phys. A 32:5445.

  30. J. Kondev and C. L. Henley, Kac-Moody symmetries of critical ground states, Nucl. Phys. B 464:540–575 (1996).

    Google Scholar 

  31. C. Moore, M. G. Nordahl, N. Minar, and C. Shalizi, Vortex dynamics and entropic forces in antiferromagnets and antiferromagnetic Potts models, Phys. Rev. E 60:5344–5351 (1999).

    Google Scholar 

  32. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, Oxford, 1999).

    Google Scholar 

  33. H. Kawamura and S. Miyashita, Phase transition of the two-dimensional Heisenberg antiferromagnet on the triangular lattice, J. Phys. Soc. Japan 53:4138–4154 (1984).

    Google Scholar 

  34. C. F. Baillie and P. D. Coddington, Comparison of cluster algorithms for two-dimensional Potts models, Phys. Rev. B 43:10617–10621 (1991)

    Google Scholar 

  35. C. Zeng and C. L. Henley, Zero-temperature phase transitions of an antiferromagnetic Ising model of general spin on a triangular lattice, Phys. Rev. B 55:935–947 (1997).

    Google Scholar 

  36. M. E. Fisher, Rigorous inequalities for critical-point correlation exponents, Phys. Rev. 180:594–600 (1969).

    Google Scholar 

  37. J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of critical Phenomena (Oxford University Press, Oxford, 1992).

    Google Scholar 

  38. J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, C., Newman, M.E.J. Height Representation, Critical Exponents, and Ergodicity in the Four-State Triangular Potts Antiferromagnet. Journal of Statistical Physics 99, 629–660 (2000). https://doi.org/10.1023/A:1018638624854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018638624854

Navigation